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0 Introduction

Motivation

Derivators provide an abstract framework for homotopy theory. In par-
ticular, many statements from (classical) homotopy theory can be formu-
lated and proven for certain kinds of derivators. This thesis is about one
such statement, namely a “derivator version” of the fact that the loop spaces
have a canonical group object structure in the homotopy category of topo-
logical spaces.

About This Thesis

The thesis is diveded into three sections. In the first section I try to
give a clear and precise description of preadditive and additive categories.
It is not much more than an elaboration of the Subsection 2.1 of [2]. In the
second section I delve into the main topic of this thesis and show that loop
objects in values of a stable derivator are group objects. The main reference
for this section is [1]. The third section covers the case of double loop objects
and depicts an Eckmann-Hilton argument showing that double loop objects
in values of a stable derivator are indeed abelian group objects.

I omitted a general introduction to the theory of derivators, partially
because this thesis would be much longer if it introduced every non-trival
concept or statement it used and also because there are a few rather elemen-
tary introductory texts about this topic (e. g. [2]) which are more detailed
than what I could write for this thesis. However, it would be convenient for
the reader to get familiar with derivators before reading this thesis.

Even though the introduction is written from a first person perspective,
the “mathematical we” will accompany the reader in the main part of the
thesis.

Acknowledgments and Thanks
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1 Additive Categories and Group Objects

A motivation for showing that loop objects in stable derivators are group
objects is that this statement can be used to show that the values of a stable
derivator have the structure of an additive category. (In fact, values of a
large class of stable derivators have even the structure of a triangulated
category and additivity is an important step towards this statement.) In
this section, we discuss some concepts and methods which lead to this proof
of additivity of values of stable derivators.

Definition 1.1. A preadditive category is a category A s. t.

(i) A is pointed, i. e. has a zero object, which is an object 0 which is both
initial and terminal,

(ii) binary (and hence all finite) products and coproducts exist in A,

(iii) for any X,Y P ob A, the morphism

pidX ˆ 0X,Y q > p0Y,X ˆ idY q : X > Y Ñ X ˆ Y

is an isomorphism, where 0X,Y : X Ñ 0 Ñ Y resp. 0Y,X : Y Ñ 0 Ñ X
is the unique morphism which factors through a zero object.

Notation 1.2. • Biproducts in the above sense will be denoted by ‘ .

• If X, Y , X 1 resp. Y 1 are objects of a preadditive category and fX,X 1 : X Ñ

X 1, fY,X 1 : Y Ñ X 1, fX,Y 1 : X Ñ Y 1 resp. fY,Y 1 : Y Ñ Y 1 are some
morphisms, then we denote the morphism

pfX,X 1 ˆ fX,Y 1q > pfY,X 1 ˆ fX,X 1q : X ‘ Y Ñ X 1 ‘ Y 1

by
ˆ

fX,X 1 fY,X 1

fX,Y 1 fY,Y 1

˙

.

Note that, using the universal properties of products and coproducts,
any morphism f : X ‘ Y Ñ X 1 ‘ Y 1 can be written as

f “

ˆ

prX 1 ˝ f ˝ inX prX 1 ˝ f ˝ inY
prY 1 ˝ f ˝ inX prY 1 ˝ f ˝ inY

˙

.

Matrices of different sizes are constructed similarly.

• We will also use common abuses of notation such as denoting an iden-
tity morphism by 1 or a morphism that factors through a zero object
by 0.
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Remark 1.3. A preadditive category is enriched over the category AbMon
of abelian monoids. Indeed, for any X,Y P ob A, setting

f ` g : X

´

1 1
¯

ÝÝÝÝÝÑ X ‘X

¨

˝

f 0
0 g

˛

‚

ÝÝÝÝÝÑ Y ‘ Y

¨

˝

1
1

˛

‚

ÝÝÝÑ Y

for f, g P HomApX,Y q yields an abelian monoid structure on HomApX,Y q
with neutral element 0X,Y and for any X,Y, Z P ob A, the composition map

˝ : HomApY, Zq ˆHomApX,Y q Ñ HomApX,Zq

is bilinear w. r. t. this “addition operation”.
Furthermore, a straightforward computation shows that composing mor-

phisms corresponds to multiplying their matrix representations.

Remark 1.4. The previous remark implies in particular that any object X
of a preadditive category has the structure of an abelian monoid object given
by the codiagonal morphism ∇ :“ p 1 1 q : X‘X Ñ X and the “unit” 0 Ñ X.
Dually, X has also the structure of a coabelian comonoid object given by the
diagonal morphism ∆ :“ p 1

1 q : X ‘X Ñ X and the “counit” X Ñ 0.

As the prefix “pre” suggests, preadditive categories are not quite what
we are looking for. We will get to the concept of additive categories by
requiring that additive inverses of morphisms exist:

Proposition 1.5. The following are equivalent for a preadditive category
A:

(i) For any X P ob A the “shear morphism”
ˆ

1 1
0 1

˙

: X ‘X Ñ X ‘X

is an isomorphism.

(ii) For any X P ob A the identity morphism idX has an additive inverse
in EndApAq.

(iii) For any X,Y P ob A, each f P HomApX,Y q has an additive inverse.

(iv) For any X P ob A, the abelian monoid object pX,∇, 0 Ñ Xq is an
(abelian) group object.

(v) For any X P ob A, the coabelian comonoid object pX,∆, X Ñ 0q is a
(coabelian) cogroup object.
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Proof. “piq ñ piiq”: Let the inverse of the shear morphism of X be given by
ˆ

j1,1 j1,2
j2,1 j2,2

˙

: X ‘X Ñ X ‘X.

Then we have
ˆ

1 0
0 1

˙

“

ˆ

1 1
0 1

˙ˆ

j1,1 j1,2
j2,1 j2,2

˙

“

ˆ

j1,1 ` j2,1 j1,2 ` j2,2
j2,1 j2,2.

˙

Hence j1,2 “ 0X,X and j1,1 “ j2,2 “ idX . This yields

idX ` j1,2 “ j2,2 ` j1,2 “ 0X,X ,

so j1,2 is an additive inverse of idX .
“piiq ñ piiiq”: Let ´idX be an additive inverse for idX . Then the

bilinearity of composition yields

f`f ˝p´idXq “ f ˝ idX`f ˝p´idXq “ f ˝pidX`p´idXqq “ f ˝0X,X “ 0X,Y ,

i. e. f ˝ p´idXq is an additive inverse for f .
“piiiq ñ pivq”: Note that X is a group object in A iff its represented

functor HomAp , Xq factors through the category Grp of groups. Since X is
an abelian monoid object, we already know that HomAp , Xq factors through
AbMon. Now the fact that for each Y P ob A each f P HomApY,Xq has an
additive inverse implies that the abelian monoids pHomApY,Xq ,`Y,X , 0Y,Xq
are in fact abelian groups. Since all monoid homomorphisms between groups
are already homomorphisms of groups, this means that HomAp , Xq factors
through the category of (abelian) groups.

“pivq ñ pvq”: If X is a group object with the “multiplication” given by
∇, there exists a morphism j : X Ñ X s. t.

0X,X “
`

1 1
˘

ˆ

1
j

˙

“ idX ˝ idX ` idX ˝ j “ idX ` j.

Hence for comonoid structure on X we obtain
`

1 j
˘

ˆ

1
1

˙

“ idX ˝ idX ` j ˝ idX “ idX ` j “ 0X,X .

A similar argument shows that the fact that j is also a “left inverse for
the multiplication of X” implies that j is also a “left inverse for the comul-
tiplication of X”. In total, we obtain that pX,∆, X Ñ 0, jq is a cogroup
object.

“pvq ñ piq”: Let j : X Ñ X be the “coinverse” morphism w. r. t. ∆.
Then calculations similar to the ones in the proof of the previous implication
yield that idX ` j “ 0X,X “ j ` idX . Hence we obtain

ˆ

1 1
0 1

˙ˆ

1 j
0 1

˙

“

ˆ

1` 0 j ` 1
0` 0 0` 1

˙

“

ˆ

1 0
0 1

˙
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and
ˆ

1 j
0 1

˙ˆ

1 1
0 1

˙

“

ˆ

1` 0 1` j
0` 0 0` 1

˙

“

ˆ

1 0
0 1

˙

.

Since idX‘X “ p 1 0
0 1 q, we see that the shear morphism is an isomorphism.

Definition 1.6. A preadditive category is called additive if it satisfies one
(and hence all) of the conditions in the previous proposition.

Remark 1.7. Additive categories are enriched over Ab.
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2 Loop Objects

In this section, we prove our main result by first showing that loop
objects in values of pointed derivators are monoid objects and then showing
that there are inversion morphisms for the multiplication morphisms of loop
objects.

For the rest of this section let D be a pointed derivator.

2.1 Loop Objects as Simplicial Objects

As a preparation for the monoid structure, we will now show that loop
objects fulfill slightly more general conditions than that for a simplicial ob-
ject.

Notation 2.1. • Let xny :“ t0, . . . , nu for n P N. We will consider
these as objects of the category Fin of finite sets or equivalently finite
discrete categories.

• Let B : Fin Ñ Cat be the cone functor, i. e. the functor which adds a
terminal object 8 to a given category. Let n :“ xnyB.

Definition 2.2. For a P Fin let

ωa : Dpˇq
8!
ÝÑ DpaBq

limaB
ÝÝÝÑ Dpˇq.

For n P N we will abuse notation and write ωn for ωxny. In particular,
we have Ω – ω1 “ lim 1 ˝8! : Dpˇq Ñ Dp 1q Ñ Dpˇq for the loop functor.

Lemma 2.3. The assignment a ÞÑ ωa can be made into a functor

ω : Finop Ñ ENDCATpDpˇqq.

Proof. For a P ob Fin, ωa is an endofunctor of Dpˇq by construction.
For functoriality, we consider a, b P ob Fin and f : aÑ b. Then we have

two diagrams

ˇ ˇ

aB bB

ˇ ˇ

8 8

fB  

Dpˇq Dpˇq

DpaBq DpbBq

Dpˇq Dpˇq

8! ñ 8!

limaB

pfBq˚

limbB
ð

, (1)

where the second one is obtained from the first by applying D and then
using the appropriate mates.
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Now we want to show that the upper natural transformation on the right
is an isomorphism and then define the natural transformation ωf : ωb ñ ωa
as the pasting of the two squares on the right.

Note that we can detect such isomorphisms pointwise. In order to do
that, we consider an x P obpaq which yields a diagram

p8{xq ˇ ˇ

ˇ aB bB

π

π 8ð 8“

x fB

.

Then we know that the mate transformation π!π
˚ ñ x˚8! is an iso-

morphism since the square on the left is a slice square and hence homotopy
exact. Futhermore, we have

p8{xq –

#

H x ‰ 8

ˇ x “ 8
.

Since fBpxq “ 8 iff x “ 8, this yields that the pasting of the two squares
is a also slice square, hence homotopy exact, which means that the mate
transformation π!π

˚ ñ pfBpxqq˚8! is an isomorphism. Hence, in total, we
obtain that the mate transformation x˚8! ñ pfBpxqq˚8! is an isomorphism.

We can now define ωf : ωb ñ ωb to be the pasting of the inverse of 8! ñ
pfBq˚8! with limbB ñ limaBpf

Bq˚. This construction is compatible with
composition of maps since mates are compatible with pastings. Furthermore,
identities are mapped to identites since all the natural transformations in
(1) are identities if f is an identity map.

Corollary 2.4. For X P obpDpˇqq, pωnXqnPN can be viewed as a simplicial
object since the simplex category ∆ is a subcategory of Fin (which is not
full).

2.2 Loop Objects as Monoid Objects

The next step in this section is showing that the simplicial objects asso-
ciated with loop objects are trivial in the zeroth level and satisfy the Segal
condition, which means that loop objects are monoid objects.

Remark 2.5. For X P obpDpˇqq we have ω0X – 0˚8!X since 0 is the
terminal object of x0y, and hence ω0 – 0 since 8 : ˇ Ñ x0y is a cosieve.

Proposition 2.6. Let n ą 1. We define in : xn´ 1y Ñ xny to be the inclu-
sion and i1n : x1y Ñ xny to be the function with i1np0q “ n´1 resp. i1np1q “ n.

Then the natural transformation αn : ωn ñ ωn´1 ˆ ω1 induced by the
functor kn :“ iBn > i

1
n
B : n´1 > 1 Ñ n is an isomorphism.
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Proof. Let Jn be the category which is obtained from n by adding two
objects w0, w1 with morphisms w0 Ñ k for 0 ď k ď n´ 1 resp. w1 Ñ k for
n´ 1 ď k ď n (and resulting compositions), and let jn : n Ñ Jn denote its
inclusion functor.

Let be the full subcategory of Jn containing w0, w1 and n´ 1 (which
is isomorphic to 1), and let ln denote its inclusion functor. Since n ´ 1 is
terminal in , we will denote it also by 8. Note that ln has a right adjoint
rn given by

rnpxq “

$

’

&

’

%

w0 x P tw0, 0, . . . , n´ 2u
w1 x P tw1, nu

n´ 1 x P tn´ 1,8u
.

for x P ob Jn, which defines the images of morphisms uniquely. Hence we
have l˚n – prnq˚.

Then, using the natural equivalence DpA>Bq » DpAqˆDpBq for A,B P
ob Cat and appropriate mates, we obtain a diagram

Dpˇq Dpˇ >ˇq

Dp nq Dp n´1 > 1q

DpJnq Dpˇ >ˇq Dpˇq

Dp q Dp q Dpˇq

pid>idq˚

p8nq! p8n´1>81q!ð
k˚n

pjnq˚ pπn´1>π1q˚

pw0>w1q˚

l˚n–prnq˚

ñ
pπˇ>ˇq˚

pw0>w1q˚ id˚
id˚
ñ

pπ1q˚

–

.

Under the equivalences mentioned above the upper natural transforma-
tion is given by

p8n´1q! ˆ p81q! ñ
´

piBn q
˚ ˆ pi1n

B
q˚
¯

p8nq!,

which is the product of the natural transformations which occur in the
definition of ωin resp. ωi1n (see (1) in the proof of Lemma 2.1). Hence it
is an isomorphism as the product of two natural isomorphisms. Further-
more, the right square in the last row commutes up to isomorphism since
π1pw0 > w1q “ πˇ>ˇ.

All in all, the diagram above yields a natural transformation from

pπ1q˚prnq˚pjnq˚p8nq! – pπnq˚p8nq! – ωn

to

pπˇ>ˇq˚pπn´1>π1q˚p8n´1>81q! – ppπn´1q˚8n´1qˆppπ1q˚81q – ωn´1ˆω1
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which is the αn mentioned in the statement of this proposition. We now
want to show that (certain restrinctions of) the natural transformations in
the remaining two squares are isomorphisms, which will imply that αn is an
isomorphism.

For the middle square we consider diagrams of the form

px{pπn´1 > π1qq n´1 > 1 n

ˇ ˇ >ˇ Jn

px,πn´1>π1

πpx{pπn´1>π1qq

kn

πn´1>π1 jn

x

ñ

w0>w1

ñ

for x P obpˇ >ˇq “ tˇ0, ˇ1u.
Then we have

pˇ0{pπn´1 > π1qq – n´1 and pˇ1{pπn´1 > π1qq – 1

where under this identification pˇ0,πn´1>π1 resp. pˇ1,πn´1>π1 is given by the
inclusion ι0 resp. ι1 of the corresponding category. Since the left square is a
slice square, this means that

ˇ˚0pπn´1 > π1q˚ ñ pπpˇ0{pπn´1>π1qqq˚ppˇ0,πn´1>π1q
˚ – pπn´1q˚ι

˚
0

and
ˇ˚1pπn´1 > π1q˚ ñ pπpˇ1{pπn´1>π1qqq˚ppˇ1,πn´1>π1q

˚ – pπ1q˚ι
˚
1

are isomorphisms.
On the other hand, we also have

pw0{jnq – n´1 and pw1{jnq – 1,

where under this identification pw0,jn is given by iBn “ knι0 and pw1,jn is
given by i1n

B
“ knι1. Hence the pasting of the above squares is (up to

isomorphisms) also a slice square, so the natural transformations

ppw0 > w1qˇ0q
˚pjnq˚ “ w˚0 pjnq˚ ñ pπpw0{jnqq˚ppw0,jnq

˚ – pπn´1q˚pi
B
n q
˚

and

ppw0 > w1qˇ1q
˚pjnq˚ “ w˚1 pjnq˚ ñ pπpw1{jnqq˚ppw1,jnq

˚ – pπ1q˚pi
B
n q
˚

are also isomorphisms.
Combining these isomorphisms, we see that

ˇ˚0pπn´1 > π1q˚k
˚
n – pπn´1q˚ι

˚
0k
˚
n

– pπn´1q˚pi
B
n q
˚ – w˚0 pjnq˚

– ppw0 > w1qˇ0q
˚pjnq˚ – ˇ

˚
0pw0 > w1q

˚pjnq˚
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and

ˇ˚1pπn´1 > π1q˚k
˚
n – pπn´1q˚ι

˚
1k
˚
n

– pπn´1q˚pi
1
n
B
q˚ – w˚1 pjnq˚

– ppw0 > w1qˇ1q
˚pjnq˚ – ˇ

˚
1pw0 > w1q

˚pjnq˚.

Since mates are compatible with pastings this means that the natural
transformation x˚pw0 > w1q

˚pjnq˚ ñ x˚pπn´1 > π1q˚k
˚
n is an isomorphism

for all x P obpˇ > ˇq, hence it is an isomorphism as isomorphisms can be
detected pointwise.

Note that, in general, the natural transformation

l˚n – prnq˚ ñ pw0 > w1q˚pw0 > w1q
˚

in the first square of the last row is not an isomorphism for all X P DpJnq.
We are going to “fix” this by restricting our attention to essimppjnq˚p8nq!q.

First, we compute pn´1q˚pjnq˚X 1 for X 1 P essimp8!q: Consider the slice
square

pn´ 1{jnq n

ˇ Jn

p

π jn

n´1

ñ
.

Then we know that pn´ 1q˚pjnq˚ ñ π˚p
˚ is an isomorphism.

Now pn´ 1{jnq is isomorphic to the full subcategory Kn of n spanned
by n´ 1 and 8, where p corresponds to the inclusion Kn Ñ n under this
identification. Hence we see that π˚p˚ – pn ´ 1q˚p˚ – pppn ´ 1qq˚ since
n´ 1 is the initial object of Kn. Therefore pn´ 1q˚pjnq˚ – pn´ 1q˚, where
the former n ´ 1 is the object in Jn and the latter the one in n. Since
8 : ˇ Ñ n is a cosieve we know that pn ´ 1q˚X 1 – 0 for X 1 P essimp8!q,
so we obtain pn´ 1q˚pjnq˚X 1 – 0.

This means that forX P essimppjnq˚p8nq!q we have8˚l˚nX – pln8q
˚X –

pn ´ 1q˚X – 0. On the other hand, for any Y P Dpˇ > ˇq, we have
8˚pw0 > w1q˚Y – 0 since w0 > w1 is a sieve. Hence l˚n – prnq˚ and
pw0 > w1q˚pw0 > w1q

˚ agree on 8 “ n´ 1 for X P essimppjnq˚p8nq!q.
We now consider wi for i P t0, 1u. In the slice square

pwi{w0 > w1q ˇ >ˇ

ˇ

p

π w0>w1

wi

ñ
,

pwi{w0 >w1q can be identified with ˇ and p with ˇi : ˇ Ñ ˇ >ˇ. Hence we
see that w˚i pw0 > w1q˚ ñ π˚w

˚
i – w˚i is an isomorphism. This yields

w˚i pw0 > w1q˚pw0 > w1q
˚ –
ùñ w˚i pw0 > w1q

˚ “ ppw0 > w1qwiq
˚

“ w˚i “ plnwiq
˚ “ w˚i l

˚
n – w˚i prnq˚,
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so w˚i prnq˚ ñ w˚i pw0>w1q˚pw0>w1q
˚ is an isomorphism by the compatibility

of mates with pastings.
All in all, prnq˚ ñ pw0 >w1q˚pw0 >w1q

˚ is an isomorphism pointwise, so
it is indeed an isomorphism. This means that the last remaining square is
also filled with an isomorphism, so αn : ωn ñ ωn´1 ˆ w1 is an isomorphism
in total.

Corollary 2.7. Let µ : x1y Ñ x2y be the map with µp0q “ 0 resp. µp1q “ 2
and let ε be the unique map from x1y to x0y.

Then for any X P obpDpˇqq, ω1X – ΩX has a monoid object structure
given by the multiplication

mX : ω1X ˆ ω1X
pα´1

2 qX
ÝÝÝÝÝÑ ω2X

pωµqX
ÝÝÝÝÑ ω1X

and the unit
0: 0 –

ÝÑ ω0X
pωεqX
ÝÝÝÝÑ ω1X.

Proof. Remark 2.5 and Proposition 2.6 imply that the Segal morphism

ωnX Ñ pω1Xq
ˆω0Xn – pω1Xq

n

is an isomorphism for any n P N, i. e. that pωnXqnPN satisfies the Segal
condition.

Hence ω1X is a category object, where the composition is given by
ωµ : ω2 Ñ ω1 and identity morphisms are given by ωε : ω0 Ñ ω1. Since
ω0X – 0, this means that ω1X is a monoid object with the given multipli-
cation and unit.

2.3 Loop Objects as Group Objects

The last step of our consideration is the construction of inverses for
the multiplication of loop objects, concluding that loop objects are group
objects.

Proposition 2.8. Let σ : x1y Ñ x1y be the only non-trivial automorphism,
i. e. the map swapping 0 and 1.

Then, for any X P Dpˇq, there is an inversion morphism for the multi-
plication of ΩX – ω1X which is given by pωσqX : ω1X Ñ ω1X.

Proof. We have to show that the composition z :“ mX ˝ pidX ˆ pwσqXq is
the zero morphism. In order to do that, we will describe z as a morphism
which factors through ω2X.
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Let φ : x2y Ñ x1y be the map with φp0q “ 0 “ φp2q and φp1q “ 1, Then
we have a diagram

Dpˇq Dpˇ >ˇq

Dpˇq

Dp 2q Dp 1 > 1q

Dp 1q

Dpˇq Dpˇq

Dpˇq

pid>idq˚

8! p8>8q!

id˚ pid>idq˚

k˚2

π˚ π˚

pφBq˚ pid>σBq˚

8!

id˚

id˚ id˚

π˚

in which the horizontal triangles commute.
Hence the vertical squares on the right side can be seen as pastings of

the vertical squares on the left side and the vertical squares at the back.
This means that idX ˆ pwσq (pasting of the squares on the right) can be
identified as α2 ˝ ωφ (pasting of the pastings of the squares on the left resp.
at the back).

Using the definition of mX , we obtain that

z “ mX ˝ pidX ˆ pwσqXq
“ pωµqX ˝ pα

´1
2 qX ˝ pα2qX ˝ pωφqX

“ pωµqX ˝ pωφqX “ pωφ˝µqX .

Now note that φ ˝ µ factors through x0y as φpµp0qq “ φp0q “ 0 “ φp2q “
φpµp0qq. Hence z “ pωφ˝µqX factors through ω0X – 0, so it is indeed the
zero morphism.
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3 Double Loop Objects
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