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0 Introduction

Motivation

Derivators provide an abstract framework for homotopy theory. In par-
ticular, many statements from (classical) homotopy theory can be formu-
lated and proven for certain kinds of derivators. This thesis is about one
such statement, namely a “derivator version” of the fact that the loop spaces
have a canonical group object structure in the homotopy category of topo-
logical spaces.

About This Thesis

The thesis is diveded into three sections. In the [first section] I try to
give a clear and precise description of preadditive and additive categories.
It is not much more than an elaboration of the Subsection 2.1 of [2]. In the

[second section] I delve into the main topic of this thesis and show that loop
objects in values of a stable derivator are group objects. The main reference

for this section is [I]. The[third section|covers the case of double loop objects
and depicts an Eckmann-Hilton argument showing that double loop objects
in values of a stable derivator are indeed abelian group objects.

I omitted a general introduction to the theory of derivators, partially
because this thesis would be much longer if it introduced every non-trival
concept or statement it used and also because there are a few rather elemen-
tary introductory texts about this topic (e.g. [2]) which are more detailed
than what I could write for this thesis. However, it would be convenient for
the reader to get familiar with derivators before reading this thesis.

Even though the introduction is written from a first person perspective,
the “mathematical we” will accompany the reader in the main part of the
thesis.

Acknowledgments and Thanks



1 Additive Categories and Group Objects

A motivation for showing that loop objects in stable derivators are group
objects is that this statement can be used to show that the values of a stable
derivator have the structure of an additive category. (In fact, values of a
large class of stable derivators have even the structure of a triangulated
category and additivity is an important step towards this statement.) In
this section, we discuss some concepts and methods which lead to this proof
of additivity of values of stable derivators.

Definition 1.1. A preadditive category is a category o s.t.

(i) 9 is pointed, i. e. has a zero object, which is an object 0 which is both
initial and terminal,

(ii) binary (and hence all finite) products and coproducts exist in A,
(iii) for any X,Y € obdl, the morphism
(idX X 0X7y)U(0y’X X idy): XY - X xY

is an isomorphism, where Oxy: X - 0—Y resp. Oy x: Y - 0— X
s the unique morphism which factors through a zero object.

Notation 1.2. e Biproducts in the above sense will be denoted by _ @ _.

o IfX,Y, X' resp. Y’ are objects of a preadditive category and fx xr: X —
X' fyx:Y = X', fxy: X =Y resp. fyy:Y — Y’ are some
morphisms, then we denote the morphism

(fxx x fxy)U(fyx X fxx): X®Y - X' @Y’
by
(fX,X’ fY,X’>
Ixyr fry
Note that, using the universal properties of products and coproducts,
any morphism f: X®Y — X' @Y’ can be written as

_(prxso foiny pryso foiny
prys o foinyx pry;o foiny /)’

Matrices of different sizes are constructed similarly.

o We will also use common abuses of notation such as denoting an iden-
tity morphism by 1 or a morphism that factors through a zero object
by 0.



Remark 1.3. A preadditive category is enriched over the category AbMon
of abelian monoids. Indeed, for any X,Y € obd, setting

(f O) <1>
0 g 1
—5YPY —5Y

(r 1)
f+g X —> XX
for f,g € Homg(X,Y) yields an abelian monoid structure on Homg(X,Y)
with neutral element Ox y and for any X,Y, Z € obdl, the composition map

_o_: Homy(Y,Z) x Homy(X,Y) — Homy (X, 2)

s bilinear w. r. t. this “addition operation”.
Furthermore, a straightforward computation shows that composing mor-
phisms corresponds to multiplying their matrix representations.

Remark 1.4. The[previous remarkl implies in particular that any object X
of a preadditive category has the structure of an abelian monoid object given
by the codiagonal morphism V := (11): X®X — X and the “unit” 0 — X.
Dually, X has also the structure of a coabelian comonoid object given by the
diagonal morphism A == (1) : X ® X — X and the “counit” X — 0.

As the prefix “pre” suggests, preadditive categories are not quite what
we are looking for. We will get to the concept of additive categories by
requiring that additive inverses of morphisms exist:

Proposition 1.5. The following are equivalent for a preadditive category
oA:

(i) For any X € obdl the “shear morphism”

1 1

is an isomorphism.

(ii) For any X € obdl the identity morphism idx has an additive inverse
m Endgq (A)

(iii) For any X,Y € obd, each f € Homy(X,Y') has an additive inverse.

(iv) For any X € obd, the abelian monoid object (X,V,0 — X) is an
(abelian) group object.

(v) For any X € obd, the coabelian comonoid object (X, A, X — 0) is a
(coabelian) cogroup object.



Proof. “(i) = (i7)”: Let the inverse of the shear morphism of X be given by

(J.“ ‘7.172> XBX > XDX.
J2,1 J2,2

Then we have

(1 0> _ <1 1) (jl,l j1,2> _ <j1,1 + 21 J12 +j2,2>
01 0 1) \J21 Ja22 Ja2,1 J2,2-
Hence j172 = OX,X and j171 = j2,2 = idx. This yields

idx + j1,2 = je2 + j12 = Ox x,

so ji2 is an additive inverse of idx.
“(it) = (1i1)”: Let —idx be an additive inverse for idx. Then the
bilinearity of composition yields

f+fo(—idx) = foidx + fo(—idx) = fo(idx +(—idx)) = foOx x = Oxy,

i.e. fo(—idx) is an additive inverse for f.

“(i13) = (iv)”: Note that X is a group object in of iff its represented
functor Homy (_, X) factors through the category Grp of groups. Since X is
an abelian monoid object, we already know that Homg(_, X) factors through
AbMon. Now the fact that for each Y € ob ol each f € Homg(Y, X) has an
additive inverse implies that the abelian monoids (Homg (Y, X), +v.x, Oy, x)
are in fact abelian groups. Since all monoid homomorphisms between groups
are already homomorphisms of groups, this means that Homg(_, X) factors
through the category of (abelian) groups.

“(iv) = (v)”: If X is a group object with the “multiplication” given by
V, there exists a morphism j : X — X s.t.

OX,X = (1 1) (j) =idyoidy +idx oj =idx + 3.
Hence for comonoid structure on X we obtain
1
(1 J) (1> =idyoidx +joidx =idx +j = Ox,x.

A similar argument shows that the fact that j is also a “left inverse for
the multiplication of X implies that j is also a “left inverse for the comul-
tiplication of X”. In total, we obtain that (X,A, X — 0,j) is a cogroup
object.

“(v) = (i)”: Let j : X — X be the “coinverse” morphism w.r.t. A.
Then calculations similar to the ones in the proof of the previous implication
yield that idy +j = 0x x = j +idx. Hence we obtain

1 1\ /1 5\ (140 j+1\ (1 0
o 1)\o 1) \o+0 0+1) \0o 1

10



and
1 7\ /1 1\ (140 144\ (1 0
0 1)J\o 1) \o+0 0o+1) \o 1/)°

Since idxgx = ({ §), we see that the shear morphism is an isomorphism. [J

Definition 1.6. A preadditive category is called additive if it satisfies one
(and hence all) of the conditions in the|previous proposition,.

Remark 1.7. Additive categories are enriched over Ab.

11



2 Loop Objects

In this section, we prove our main result by first showing that loop
objects in values of pointed derivators are monoid objects and then showing
that there are inversion morphisms for the multiplication morphisms of loop
objects.

For the rest of this section let @ be a pointed derivator.

2.1 Loop Objects as Simplicial Objects

As a preparation for the monoid structure, we will now show that loop
objects fulfill slightly more general conditions than that for a simplicial ob-
ject.

Notation 2.1. o Let {ny = {0,...,n} for n € N. We will consider
these as objects of the category Fin of finite sets or equivalently finite
discrete categories.

e Let " : Fin — Cat be the cone functor, i. e. the functor which adds a
terminal object oo to a given category. Let i, = (n)".

Definition 2.2. For a € Fin let

lim >

wa: D(%) = D(a™) PD(%).

For n € N we will abuse notation and write wy, for wg,. In particular,
we have Q = wy = lim_j, 0001: D(%) — D(J1) — D(%) for the loop functor.

Lemma 2.3. The assignment a — w, can be made into a functor
w: Fin®°? — ENDCAT(QS(%)).

Proof. For a € obFin, w, is an endofunctor of & (%) by construction.
For functoriality, we consider a,b € obFin and f: a — b. Then we have
two diagrams

¥ — % D(%) «—— D(*)
ool D loo OO!J( AN J{OC!

o L D(a™) oy D(H™) > (1)
R A I

T % D(%) +—— D(%)

where the second one is obtained from the first by applying & and then
using the appropriate mates.

12



Now we want to show that the upper natural transformation on the right
is an isomorphism and then define the natural transformation wy: wy = w,
as the pasting of the two squares on the right.

Note that we can detect such isomorphisms pointwise. In order to do
that, we consider an x € ob(a) which yields a diagram

(o0/z) —— % *
ﬂl Yz Joo 7 Joo
¥ = a® 1= b>

Then we know that the mate transformation mn7* = x*o00, is an iso-
morphism since the square on the left is a slice square and hence homotopy
exact. Futhermore, we have

(oo/:):);{@ vEO
¥ x =00
Since f"(z) = oo iff x = oo, this yields that the pasting of the two squares
is a also slice square, hence homotopy exact, which means that the mate
transformation m7* = (f¥(z))*o0, is an isomorphism. Hence, in total, we
obtain that the mate transformation 2*00; = (f* (z))*o0; is an isomorphism.
We can now define wy: wp = wy, to be the pasting of the inverse of co) =
(f7)*o0y with limp> = limge (f7)*. This construction is compatible with
composition of maps since mates are compatible with pastings. Furthermore,
identities are mapped to identites since all the natural transformations in
are identities if f is an identity map. O

Corollary 2.4. For X € ob(D (%)), (wnX)nen can be viewed as a simplicial
object since the simplex category A is a subcategory of Fin (which is not

full).

2.2 Loop Objects as Monoid Objects

The next step in this section is showing that the simplicial objects asso-
ciated with loop objects are trivial in the zeroth level and satisfy the Segal
condition, which means that loop objects are monoid objects.

Remark 2.5. For X € ob(D(%)) we have woX = 0% X since 0 is the
terminal object of {0), and hence wy = 0 since c0: % — {0) is a cosieve.

Proposition 2.6. Let n > 1. We define in,: {n —1) — (n) to be the inclu-
sion and i), : (1) — (n) to be the function with i, (0) = n—1 resp. i,,(1) = n.

Then the natural transformation ou,: w, = wn,—1 X w1 nduced by the
functor ky, =i Hi’nb: dp_1 Uy — 1y s an isomorphism.

13



Proof. Let J, be the category which is obtained from _, by adding two
objects wy, wy with morphisms wg — k for 0 < k < n — 1 resp. w; — k for
n —1 < k < n (and resulting compositions), and let j,: J,, — J, denote its
inclusion functor.

Let _ be the full subcategory of J,, containing wg, wy and n — 1 (which
is isomorphic to _I1), and let I,, denote its inclusion functor. Since n — 1 is
terminal in _J, we will denote it also by co. Note that [,, has a right adjoint
ryn, given by

wo x € {wp,0,...,n— 2}
ro(z) = < wy x € {wy,n}
n—1 ze{n—1,0}
for = € ob J,, which defines the images of morphisms uniquely. Hence we
have [ =~ (7).

Then, using the natural equivalence @ (ALB) ~ D(A) x D(B) for A, B €

ob Cat and appropriate mates, we obtain a diagram

idrid)*
(%) UV G e 1)
(c0n ) & (00p—111001 )y

*
D(n) — s Bt 11 1)

(Jn)= = (Tr—1l0mm1 ) %
@(Jn) (wollwy ) * %(%H%) (T ) s %(%)
UE=(rn)x = (wollwy )5 Z Jid*
2(0) —— () 5 (%)

Under the equivalences mentioned above the upper natural transforma-
tion is given by

(on1)r x (o) = ()" % (57)7) (o)

which is the product of the natural transformations which occur in the

definition of w;, resp. w; (see in the proof of . Hence it
is an isomorphism as the product of two natural isomorphisms. Further-
more, the right square in the last row commutes up to isomorphism since
T (wo Hwy) = Ty

All in all, the diagram above yields a natural transformation from

(71) s ()5 ()5 (00m )1 = () (000 )1 = wyy

to
(i ) (Tp—1 171 ) 5 (0051 11001 )1 2 ((T—1)x00n—1) X ((71)x001) = wp—1 X w1

14



which is the «, mentioned in the statement of this proposition. We now
want to show that (certain restrinctions of) the natural transformations in
the remaining two squares are isomorphisms, which will imply that «a,, is an
isomorphism.

For the middle square we consider diagrams of the form

Pz, 7y, _qUmq

kn,
(1‘/(71'”_1 L[7T1)) dp—q Uy ——— _p

W(z/(ﬂn_luﬁ))l =7 wn,luml = Jjn

for x € ob(% 11 %) = {*q, *1}.
Then we have

(%0/(Tp—1U71)) = Jp—1 and  (%1/(mp—1 7)) = g

where under this identification pug r,_i1r, T€SP. Dxy m,_iiim 1S given by the
inclusion ¢g resp. ¢1 of the corresponding category. Since the left square is a
slice square, this means that

#0(Tn—1 1) s = (T g /(mp_rtimn)) )5 (Do mpatimy )™ = (1) s

and
#1 (M1 U1 ) 5 = (T /(ry1imy))) s (P giimy )™ 2 (1) 0]

are isomorphisms.
On the other hand, we also have

(wo/jn) ~ Jp-1 and (wl/jn) =~ I,

where under this identification py, j, is given by iy = kpio and py, j, is
given by i;f = kpt1. Hence the pasting of the above squares is (up to
isomorphisms) also a slice square, so the natural transformations

((wo 1w1)#0)* (Jn )+ = wo (Gn)x = (T(wg/jn)) (Puwo.gn)™ = (Tn—1)x(iy)*

and

((wo w1)#1)* (Jin)sx = W] (Gn)x = (T(wy /i) s (Puwn,gn)™ = (71)4(i5)"

are also isomorphisms.
Combining these isomorphisms, we see that

#0 (Tn—1 171wk = (Tn1)wtoky,

(Tn—1) (i) = w5 ()
)

= ((wo Lwi)*0)™(Jn)x = #5(wo Lw1)* (jn)s

lle

15



and

lle

(Wn—l)*Lik Z
(1) (i )* = wi(jn)s
((wo Tw1)#1)* (fin ) = #} (wo Tw1)* (jin)s-

#] (Tp—1 LTy ) k)

lle

lle

Since mates are compatible with pastings this means that the natural
transformation x*(wo I w1)*(jn)x = z*(mp—1 L m )k} is an isomorphism
for all = € ob(% 11 %), hence it is an isomorphism as isomorphisms can be
detected pointwise.

Note that, in general, the natural transformation

1>~ (rp)s = (wo Uwy)s(wo Hwy)*

in the first square of the last row is not an isomorphism for all X € @ (J,,).
We are going to “fix” this by restricting our attention to essim((jy,)« (00, )1).

First, we compute (n—1)*(j,,)«X’ for X’ € essim(o0;): Consider the slice
square

(n - 1/]71) L) _n

ﬂl a P :

* o

Then we know that (n — 1)*(j,)« = mp™ is an isomorphism.

Now (n —1/j,) is isomorphic to the full subcategory K,, of _,, spanned
by n — 1 and oo, where p corresponds to the inclusion K,, — _,, under this
identification. Hence we see that m.p* = (n — 1)*p* = (p(n — 1))* since
n — 1 is the initial object of K,,. Therefore (n — 1)*(j,)« = (n — 1)*, where
the former n — 1 is the object in J, and the latter the one in _,. Since
0: % — Jy is a cosieve we know that (n — 1)*X’ >~ 0 for X’ € essim(o0y),
so we obtain (n — 1)*(j,)«X’ = 0.

This means that for X € essim((jn )« (005)1) we have 0*I* X =~ ([,,00)* X =~
(n —1)*X =~ 0. On the other hand, for any ¥ € @(% LI %), we have
0¥ (wo U wy)«Y = 0 since wp 1wy is a sieve. Hence [} =~ (r,). and
(wo T wy)s(wo Hwy)* agree on 00 = n — 1 for X € essim((jp)« (00, )1).

We now consider w; for ¢ € {0,1}. In the slice square

(wi/wouwl) L> * 1 %

wl = onuwl ’

% T) _|
(w;/wowy) can be identified with % and p with #;: % — % 11 %. Hence we
see that w} (wo L w)sx = mew] = w is an isomorphism. This yields

w; (wo 1wy )4 (wo Tw)* = w (wo Hwy)* = ((wo Twy)w;)*

w) = (lhyw;)* = wilk =~ wf(ry)«,

16



s0 W (rp)s = wi (wollwy )« (wollwy )* is an isomorphism by the compatibility
of mates with pastings.

All in all, () = (wo U w1 )« (woLHwi)* is an isomorphism pointwise, so
it is indeed an isomorphism. This means that the last remaining square is
also filled with an isomorphism, so o, : wy, = wW,_1 X w is an isomorphism
in total. O

Corollary 2.7. Let p: (1) — (2) be the map with p(0) = 0 resp. p(1) = 2
and let € be the unique map from (1) to {0).

Then for any X € ob(D (%)), w1 X = QX has a monoid object structure
given by the multiplication

-1
myx: w1 X X wi X M wo X M» w1 X

and the unit

0: 0 3 woX 2%, X

Proof. [Remark 2.5| and [Proposition 2.6| imply that the Segal morphism

wpX — (w1 X)) @0X" = (w X)"

is an isomorphism for any n € N, i.e. that (w,X),en satisfies the Segal
condition.

Hence w1 X is a category object, where the composition is given by
wy: wp — wp and identity morphisms are given by w.: wg — wi. Since
woX = 0, this means that w; X is a monoid object with the given multipli-
cation and unit. O

2.3 Loop Objects as Group Objects

The last step of our consideration is the construction of inverses for
the multiplication of loop objects, concluding that loop objects are group
objects.

Proposition 2.8. Let o: (1) — (1) be the only non-trivial automorphism,
i. e. the map swapping 0 and 1.

Then, for any X € D(%), there is an inversion morphism for the multi-
plication of QX =~ w1 X which is given by (wy)x: w1 X — w1 X.

Proof. We have to show that the composition z := mx o (idx x (w,)x) is

the zero morphism. In order to do that, we will describe z as a morphism
which factors through wo X.

17



Let ¢: (2) — (1) be the map with ¢(0) =0 = ¢(2) and ¢(1) = 1, Then

we have a diagram

D(%) (idutid)® D (%11 %)
Q01 E)b(%) (OOHOO)!
kX -
%(Jg) 2 %(Jl ]_[Jl)
(¢>)X %ab)*
Tk %(Jl) T
T
rs
D (%) — D ()
id* id*
D (%)

in which the horizontal triangles commute.

Hence the vertical squares on the right side can be seen as pastings of
the vertical squares on the left side and the vertical squares at the back.
This means that idx x (w,) (pasting of the squares on the right) can be
identified as ap o wy (pasting of the pastings of the squares on the left resp.
at the back).

Using the definition of mx, we obtain that

z=mx o (idx x (ws)x)
= (wp)x © (03 ") x o () x o (wy)x
= (wp)x © (we)x = (Weop) x-

Now note that ¢ o u factors through (0) as ¢((0)) = ¢(0) = 0 = ¢(2) =
#(1(0)). Hence z = (wgopu)x factors through woX = 0, so it is indeed the
zero morphism. O
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3 Double Loop Objects
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