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Zusammenfassung

Derivatore sind abstrakte Mittel, mit denen man Homotopietheorie be-
treiben kann. Insbesondere können viele Aussagen aus der (klassischen) Ho-
motopietheorie für gewisse Arten von Derivatoren formuliert und bewiesen
werden. In dieser Arbeit geht es um eine solche Aussage, nämlich eine
Derivatorversion der Tatsache, dass Schleifenräume in der Homotopiekate-
gorie der topologischen Räume eine kanonische Gruppenstruktur besitzen.
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Introduction

Motivation

Derivators provide an abstract framework for homotopy theory. In par-
ticular, many statements from (classical) homotopy theory can be formu-
lated and proven for certain kinds of derivators. This thesis is about one
such statement, namely a “derivator version” of the fact that the loop spaces
have a canonical group object structure in the homotopy category of topo-
logical spaces.

About This Thesis

The thesis consists of three regular sections and two appendices. In the
first section I deal with the main topic of this thesis, namely the fact that
loop objects in values of a pointed derivator are group objects. The main
reference for this section is [1]. The second section covers the case of double
loop objects and depicts an Eckmann–Hilton argument showing that double
loop objects in values of a pointed derivator are indeed abelian group objects.
It is followed by a very short section containing a few applications in the
general theory of derivators. The first appendix is dedicated to the Segal
condition which is used to decide if a given simplicial object is a category
object. In the second appendix I try to give a clear and precise description of
preadditive and additive categories. It is not much more than an elaboration
of Subsection 2.1 of [2].

I omitted a general introduction to the theory of derivators, partially
because this thesis would be much longer if it introduced every non-trival
concept or statement it used and also because there are a few rather elemen-
tary introductory texts about this topic (e. g. [2]) which are more detailed
than what I could write for this thesis. However, it would be convenient for
the reader to get familiar with derivators before reading this thesis.

Even though the introduction is written from a first person perspective,
the “mathematical we” will accompany the reader in the main part of the
thesis.

Acknowledgments and Thanks
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0 Preparation

Notations

Notation 0.1. Let ˇ denote the category which has a unique object ˇ with
Endˇpˇq “ idˇ, which is a terminal object in the category Cat of small
categories.

Notation 0.2. Let C be a category which has products and coproducts.
For a family pXiqiPI of objects in C we will denote the structure mor-

phisms of the product by pri :
ś

iPI Xi Ñ Xi. Given a family of morphisms
pfi : Y Ñ XiqiPI in C, we will denote the induced morphism to the product
by

ś

iPI fi : Y Ñ
ś

iPI Xi. If I “ t1, . . . , nu is finite, the product will alter-
natively be denoted by X1 ˆ ¨ ¨ ¨ ˆ Xn and the morphism into the product
which is induced by the family pf1, . . . , fnq by f1 ˆ ¨ ¨ ¨ ˆ fn.

Similarly, we will write ini : Xi Ñ
š

iPI Xi for the structure morphisms
of a coproduct and

š

iPI gi :
š

iPI Xi Ñ Y for the morphism from the co-
product which is induced by the family pgi : Xi Ñ Y qiPI of morphisms. In
the finite case X1 >¨ ¨ ¨>Xn resp. g1 >¨ ¨ ¨>gn will be the alternative notation.

A Review of Derivators
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1 Loop Objects
In this section we prove our main result, i. e. show that loop objects in

values of pointed derivators are group objects.
Let D be a pointed derivator throughout this section.

Simplicial Objects which Induce Loop Objects

The crucial point of our discussion of the loop objects is the fact that
they are induced by certain families of objects which fulfill slightly more
general conditions than that for a simplicial object.

Notation 1.1. • Let xny :“ t0, . . . , nu for n P N. We will consider
these as objects of the category Fin of finite sets or (equivalently)
finite discrete categories.

• Let ▷ : Fin Ñ Cat be the cocone functor, i. e. the functor which adds
a terminal object 8 to a given category. Let n :“ xny

▷.

Definition 1.2. For a P Fin let ωa be the composition

ωa : Dpˇq
8!
ÝÑ Dpa▷q

lima▷
ÝÝÝÑ Dpˇq.

For n P N we will abuse notation and write ωn for ωxny. In particular,
for the loop functor defined in [2, Definition 8.17] we have

Ω – ω1 : Dpˇq
8!
ÝÑ Dp 1q

lim
1

ÝÝÝÝÑ Dpˇq.

Lemma 1.3. The assignment a ÞÑ ωa can be made into a “functor”

ω : Finop Ñ ENDCATpDpˇqq,

i. e. for each a P ob Fin, ωa is an endofunctor of Dpˇq and we can assign
each map f : a Ñ b between finite sets to a natural transformation ωf : ωa ñ

ωb so that this assignment is compatible with compositions and identities.

Proof. For a P ob Fin, ωa is an endofunctor of Dpˇq by construction.
For functoriality, we consider a, b P ob Fin and f : a Ñ b. Then we have

two diagrams

ˇ ˇ

a▷ b▷

ˇ ˇ

8 8

f▷ ⇝

Dpˇq Dpˇq

Dpa▷q Dpb▷q

Dpˇq Dpˇq

8! ñ 8!

lima▷

pf▷q˚

limb▷ð

, (1)
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where the second one is obtained from the first by applying D and then
using the appropriate mates.

Now we want to show that the upper natural transformation on the right
is an isomorphism and then define the natural transformation ωf : ωb ñ ωa

as the pasting of the two squares on the right.
Note that we can detect such isomorphisms pointwise. In order to do

that, we consider an x P obpaq, which yields a diagram

p8{xq ˇ ˇ

ˇ a▷ b▷

π

π 8ð 8“

x f▷

.

Then we know that the mate transformation π!π
˚ ñ x˚8! is an iso-

morphism since the square on the left is a slice square and hence homotopy
exact. Futhermore, we have

p8{xq –

#

H x ‰ 8

ˇ x “ 8
.

Since f▷pxq “ 8 iff x “ 8, this yields that the pasting of the two squares
is a also slice square, hence homotopy exact, which means that the mate
transformation π!π

˚ ñ pf▷pxqq˚8! is an isomorphism. Hence, in total, we
obtain that the mate transformation x˚8! ñ pf▷pxqq˚8! is an isomorphism.

We can now define ωf : ωb ñ ωa to be the pasting of the inverse of 8! ñ

pf▷q˚8! with limb▷ ñ lima▷pf▷q˚. This construction is compatible with
composition of maps since mates are compatible with pastings. Furthermore,
identities are mapped to identites since all the natural transformations in
(1) are identities if f is an identity map.

Corollary 1.4. For X P obpDpˇqq, pωnXqnPN can be viewed as a simplicial
object since the simplex category ∆ is a subcategory of Fin (which is not
full).

Loop Objects as Monoid Objects

Our next step is showing that the simplicial objects associated with loop
objects are trivial in the zeroth level and satisfy the Segal condition, which
means that loop objects are monoid objects.

Remark 1.5. For X P obpDpˇqq we have ω0X – 0˚8!X since 0 is the
terminal object of x0y, and hence ω0 – 0 since 8 : ˇ Ñ x0y is a cosieve.

Proposition 1.6. Let n ą 1. We define in : xn ´ 1y Ñ xny to be the inclu-
sion and i1

n : x1y Ñ xny to be the function with i1
np0q “ n´1 resp. i1

np1q “ n.
Then the natural transformation αn : ωn ñ ωn´1 ˆ ω1 induced by the

functor kn :“ i▷n > i1
n
▷ : n´1 > 1 Ñ n is an isomorphism.
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Proof. Let Jn be the category which is obtained from n by adding two
objects w0, w1 with morphisms w0 Ñ k for 0 ď k ď n ´ 1 resp. w1 Ñ k for
n ´ 1 ď k ď n (and resulting compositions), and let jn : n Ñ Jn denote its
inclusion functor.

Let be the full subcategory of Jn containing w0, w1 and n ´ 1 (which
is isomorphic to 1), and let ln denote its inclusion functor. Since n ´ 1 is
terminal in , we will denote it also by 8. Note that ln has a right adjoint
rn given by

rnpxq “

$

’

&

’

%

w0 x P tw0, 0, . . . , n ´ 2u

w1 x P tw1, nu

n ´ 1 x P tn ´ 1, 8u

.

for x P ob Jn, which defines the images of morphisms uniquely. Hence we
have l˚

n – prnq˚.
Then, using the natural equivalence DpA>Bq » DpAqˆDpBq for A, B P

ob Cat and appropriate mates, we obtain a diagram

Dpˇq Dpˇ > ˇq

Dp nq Dp n´1 > 1q

DpJnq Dpˇ > ˇq Dpˇq

Dp q Dp q Dpˇq

pid>idq˚

p8nq! p8n´1>81q!ð
k˚

n

pjnq˚ pπn´1>π1q˚

pw0>w1q˚

l˚
n–prnq˚

ñ
pπˇ>ˇq˚

pw0>w1q˚ id˚

id˚

ñ
pπ1q˚

–

.

Under the equivalences mentioned above the upper natural transforma-
tion is given by

p8n´1q! ˆ p81q! ñ

´

pi▷n q˚ ˆ pi1
n
▷

q˚
¯

p8nq!,

which is the product of the natural transformations which occur in the
definition of ωin resp. ωi1

n
(see (1) in the proof of Lemma 1.3). Hence

it is an isomorphism as product of two natural isomorphisms. Further-
more, the right square in the last row commutes up to isomorphism since
π1pw0 > w1q “ πˇ>ˇ.

All in all, the diagram above yields a natural transformation from

pπ1q˚prnq˚pjnq˚p8nq! – pπnq˚p8nq! – ωn

to

pπˇ>ˇq˚pπn´1>π1q˚p8n´1>81q! – ppπn´1q˚p8n´1q!qˆppπ1q˚p81q!q – ωn´1ˆω1
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which is the αn mentioned in the statement of this proposition. We now
want to show that (certain restrinctions of) the natural transformations in
the remaining two squares are isomorphisms, which will imply that αn is an
isomorphism.

For the middle square we consider diagrams of the form

px{pπn´1 > π1qq n´1 > 1 n

ˇ ˇ > ˇ Jn

px,πn´1>π1

πpx{pπn´1>π1qq

kn

πn´1>π1 jn

x

ñ

w0>w1

ñ

for x P obpˇ > ˇq “ tˇ0, ˇ1u.
Then we have

pˇ0{pπn´1 > π1qq – n´1 and pˇ1{pπn´1 > π1qq – 1

where under this identification pˇ0,πn´1>π1 resp. pˇ1,πn´1>π1 is given by the
inclusion ι0 resp. ι1 of the corresponding category. Since the left square is a
slice square, this means that

ˇ˚
0pπn´1 > π1q˚ ñ pπpˇ0{pπn´1>π1qqq˚ppˇ0,πn´1>π1q˚ – pπn´1q˚ι˚

0

and
ˇ˚

1pπn´1 > π1q˚ ñ pπpˇ1{pπn´1>π1qqq˚ppˇ1,πn´1>π1q˚ – pπ1q˚ι˚
1

are isomorphisms.
On the other hand, we also have

pw0{jnq – n´1 and pw1{jnq – 1,

where under this identification pw0,jn is given by i▷n “ knι0 and pw1,jn is
given by i1

n
▷

“ knι1. Hence the pasting of the above squares is (up to
isomorphisms) also a slice square, so the natural transformations

ppw0 > w1qˇ0q˚pjnq˚ “ w˚
0 pjnq˚ ñ pπpw0{jnqq˚ppw0,jnq˚ – pπn´1q˚pi▷n q˚

and

ppw0 > w1qˇ1q˚pjnq˚ “ w˚
1 pjnq˚ ñ pπpw1{jnqq˚ppw1,jnq˚ – pπ1q˚pi▷n q˚

are also isomorphisms.
Combining these isomorphisms, we see that

ˇ˚
0pπn´1 > π1q˚k˚

n – pπn´1q˚ι˚
0k˚

n

– pπn´1q˚pi▷n q˚ – w˚
0 pjnq˚

– ppw0 > w1qˇ0q˚pjnq˚ – ˇ˚
0pw0 > w1q˚pjnq˚
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and

ˇ˚
1pπn´1 > π1q˚k˚

n – pπn´1q˚ι˚
1k˚

n

– pπn´1q˚pi1
n
▷

q˚ – w˚
1 pjnq˚

– ppw0 > w1qˇ1q˚pjnq˚ – ˇ˚
1pw0 > w1q˚pjnq˚.

Since mates are compatible with pastings this means that the natural
transformation x˚pw0 > w1q˚pjnq˚ ñ x˚pπn´1 > π1q˚k˚

n is an isomorphism
for all x P obpˇ > ˇq, hence it is an isomorphism as isomorphisms can be
detected pointwise.

Note that, in general, the natural transformation

l˚
n – prnq˚ ñ pw0 > w1q˚pw0 > w1q˚

in the first square of the last row is not an isomorphism for all X P DpJnq.
We are going to “fix” this by restricting our attention to essimppjnq˚p8nq!q.

First, we compute pn´1q˚pjnq˚X 1 for X 1 P essimp8!q: Consider the slice
square

pn ´ 1{jnq n

ˇ Jn

p

π jn

n´1

ñ
.

Then we know that pn ´ 1q˚pjnq˚ ñ π˚p˚ is an isomorphism.
Now pn ´ 1{jnq is isomorphic to the full subcategory Kn of n spanned

by n ´ 1 and 8, where p corresponds to the inclusion Kn Ñ n under this
identification. Hence we see that π˚p˚ – pn ´ 1q˚p˚ – pppn ´ 1qq˚ since
n ´ 1 is the initial object of Kn. Therefore pn ´ 1q˚pjnq˚ – pn ´ 1q˚, where
the former n ´ 1 is the object in Jn and the latter the one in n. Since
8 : ˇ Ñ n is a cosieve we know that pn ´ 1q˚X 1 – 0 for X 1 P essimp8!q,
so we obtain pn ´ 1q˚pjnq˚X 1 – 0.

This means that for X P essimppjnq˚p8nq!q we have 8˚l˚
nX – pln8q˚X –

pn ´ 1q˚X – 0. On the other hand, for any Y P Dpˇ > ˇq, we have
8˚pw0 > w1q˚Y – 0 since w0 > w1 is a sieve. Hence l˚

n – prnq˚ and
pw0 > w1q˚pw0 > w1q˚ agree on 8 “ n ´ 1 for X P essimppjnq˚p8nq!q.

We now consider wi for i P t0, 1u. In the slice square

pwi{w0 > w1q ˇ > ˇ

ˇ

p

π w0>w1

wi

ñ
,

pwi{w0 > w1q can be identified with ˇ and p with ˇi : ˇ Ñ ˇ > ˇ. Hence we
see that w˚

i pw0 > w1q˚ ñ π˚w˚
i – w˚

i is an isomorphism. This yields

w˚
i pw0 > w1q˚pw0 > w1q˚ –

ùñ w˚
i pw0 > w1q˚ “ ppw0 > w1qwiq

˚

“ w˚
i “ plnwiq

˚ “ w˚
i l˚

n – w˚
i prnq˚,
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so w˚
i prnq˚ ñ w˚

i pw0>w1q˚pw0>w1q˚ is an isomorphism by the compatibility
of mates with pastings.

All in all, prnq˚ ñ pw0 > w1q˚pw0 > w1q˚ is an isomorphism pointwise, so
it is indeed an isomorphism. This means that the last remaining square is
also filled with an isomorphism, so αn : ωn ñ ωn´1 ˆ w1 is an isomorphism
in total.

Corollary 1.7. Let µ : x1y Ñ x2y be the map with µp0q “ 0 resp. µp1q “ 2
and let ε be the unique map from x1y to x0y.

Then for any X P obpDpˇqq, ω1X – ΩX has a monoid object structure
given by the multiplication

mX : ω1X ˆ ω1X
pα´1

2 qX
ÝÝÝÝÝÑ ω2X

pωµqX
ÝÝÝÝÑ ω1X

and the unit
0: 0 –

ÝÑ ω0X
pωεqX
ÝÝÝÝÑ ω1X.

Proof. The previous proposition and the preceding remark imply that the
Segal morphism

ωnX Ñ pω1Xqn

is an isomorphism for any n P N. Therefore we have X0 – 0 and the
simplicial set induced by ω X : Finop Ñ Dpˇq satisfies the Segal condition,
so it is a special simplicial object. Hence ω1X “ ΩX has a natural monoid
object structure (see Proposition A.4).

Now note that xny P ob Fin and rns P ob ∆ are equal as sets for all
n P N. Furthermore, we have i2 “ ϕ0, i1

2 “ ϕ1, µ “ δ1 and ε “ σ0 as maps
between sets. Hence the monoid object structure on ω1X which is induced
by the special simplicial set corresponding to ω X is indeed given by the
morphisms mX and 0.

Loop Objects as Group Objects

The last step in this section is the construction of inverses for the mul-
tiplication of loop objects, concluding that loop objects are group objects.

Proposition 1.8. Let σ : x1y Ñ x1y be the only non-trivial automorphism,
i. e. the map swapping 0 and 1.

Then, for any X P Dpˇq, there is an inversion morphism for the multi-
plication of ΩX – ω1X which is given by pωσqX : ω1X Ñ ω1X.

Proof. We have to show that the composition z :“ mX ˝ pidX ˆ pwσqXq

factors through ω0X – 0, i. e. is the zero morphism. In order to do this we
will describe z as a morphism which factors through ω2X.
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Let ϕ : x2y Ñ x1y be the map with ϕp0q “ 0 “ ϕp2q and ϕp1q “ 1. We
claim that the diagram

ω2X

ω1X ω1X ˆ ω1X ω1X

pα2qX “ωi2 ˆωi1
2

pωµqXpωϕqX

idˆpωσqX
mX

commutes.
The right triangle commutes by the definition of mX . We verify the

commutativity of the left triangle componentwise. Indeed, we have

pr1 ˝ pωi2 ˆ ωi1
2
q ˝ pωϕqX “ ωi2 ˝ pωϕqX “ pωϕ˝i2qX “ pωidx1y

qX

“ idω1X “ pr1 ˝ pidω1X ˆ pωσqXq

and

pr2 ˝ pωi2 ˆ ωi1
2
q ˝ pωϕqX “ ωi1

2
˝ pωϕqX “ pωϕ˝i1

2
qX “ pωσqX

“ pr2 ˝ pidω1X ˆ pωσqXq

since ϕ ˝ i2 “ idx1y and ϕ ˝ i1
2 “ σ.

Hence we obtain that

z “ mX ˝ pidX ˆ pwσqXq

“ pωµqX ˝ pα´1
2 qX ˝ pα2qX ˝ pωϕqX

“ pωµqX ˝ pωϕqX “ pωϕ˝µqX .

Now note that ϕ ˝ µ factors through x0y as ϕpµp0qq “ ϕp0q “ 0 “ ϕp2q “

ϕpµp0qq. Hence z “ pωϕ˝µqX factors through ω0X – 0.
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2 Double Loop Objects
Our next aim is to show that the group object structure on a double

loop object is abelian.
In this section D will again be a pointed derivator.

Loop Functor as a Functor to Group Objects

An important result about the loop functor is the fact that it factors
through the category Dpˇq-Grp of group objects in Dpˇq also on the level
of morphisms.

Lemma 2.1. Let f : X Ñ Y be a morphism in Dpˇq.
Then the induced morphism Ωf : ΩX Ñ ΩY is a homomorphism of group

objects in Dpˇq, where ΩX and ΩY are endowed with the group object struc-
ture discussed in the previous section.

Proof. First we note that the functors ω X, ω Y : Finop Ñ Dpˇq induce
special simplicial objects as discussed in the previous section. Furthermore,
a morphism f : X Ñ Y induces morphisms ωaf : ωaX Ñ ωaY for a P ob Fin.
This assignment is natural in a since for a given u : a Ñ b, the diagram

ωaX ωaY

ωbX ωbY

ωaf

pωuqX

ωbf

pωuqY

commutes since ωu is a natural transformation by Lemma 1.3.
Hence ω f : ω X ñ ω Y induces a morphism of monoid objects

ΩX “ ω1X
ω1f“Ωf
ÝÝÝÝÝÑ ω1Y “ ΩY

as a natural transformation between special simplicial objects (see Proposi-
tion A.6). Now any morphism of monoid objects between group objects is
already a morphism of group objects. (This can be, for example, checked
on represented functors and hence can be reduced to the fact that a monoid
homomorphism between groups is already a group homomorphism.)

Products under the Loop Functor

The next step in this section is showing that Ω preserves products.

Remark 2.2. Note that the functor Ω: Dpˇq Ñ Dpˇq has a left adjoint
Σ: Dpˇq Ñ Dpˇq (see [2, Proposition 8.18]).

Hence Ω preserves limits. In particular, the natural morphism

Ω

˜

ź

iPI

Xi

¸

ś

iPI Ωppriq
ÝÝÝÝÝÝÝÑ

ź

iPI

ΩXi
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is an isomorphism for any index set I and any family pXiqiPI of objects in
Dpˇq.

This immidiately implies that also the group object structure on loop
objects are compatible with products.

Remark 2.3. For X, Y P ob Dpˇq, the morphism ΩpX ˆ Y q
Ωppr1qˆΩppr2q
ÝÝÝÝÝÝÝÝÝÑ

ΩX ˆΩY is a homomorphism of group objects since it is a product of group
object homomorphisms.

This endows ΩpX ˆ Y q with the structure of a product of ΩX and ΩY
as group objects s. t.

mΩpXˆY q “ pΩppr1q ˆ Ωppr2qq´1 ˝ multΩXˆΩY ˝pΩppr1q ˆ Ωppr2qq,

where multΩXˆΩY : pΩX ˆ ΩY q ˆ pΩX ˆ ΩY q Ñ ΩX ˆ ΩY is the multipli-
cation morphism of the product group object.

Furthermore, the compatibility of Ω with products yields a “new” group
object structure on double loop objects.
Corollary 2.4. For X P obpDpˇqq, Ω2pXq has (in addition to the one
given by being the loop object of ΩpXq) a group object structure given by the
multiplication

m1
X : Ω2pXq ˆ Ω2pXq

–
ÝÑ ΩpΩX ˆ ΩXq

ΩpmX q
ÝÝÝÝÑ ΩpΩpXqq “ Ω2X,

the unit
0 Ñ Ω2X

and inverses
Ω2X

ΩppωσqX q
ÝÝÝÝÝÝÑ Ω2X.

Proof. The commutativity of the required diagrams follow from the fact that
the corresponding diagrams commute before applying Ω.

The Eckmann–Hilton Argument

We now have everything at hand to immitate the standard proof of the
fact that a group object in Grp is an abelian group in order to show that
the group object structure on a double loop object is abelian.
Lemma 2.5. Let X P ob Dpˇq. Let s2,3 :“ pr1 ˆpr3 ˆpr2 ˆpr4 : pΩ2Xq4 Ñ

pΩ2Xq4 be the morphism which “swaps the second and the third factor”.
Then the diagram

Ω2X ˆ Ω2X ˆ Ω2X ˆ Ω2X Ω2X ˆ Ω2X ˆ Ω2X ˆ Ω2X

Ω2X ˆ Ω2X Ω2X ˆ Ω2X

Ω2X

s2,3

m1
X ˆm1

X mΩX ˆmΩX

mΩX m1
X
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is commutative.

Proof. We first note that the diagram

ΩpΩX ˆ ΩXq ˆ ΩpΩX ˆ ΩXq

ΩpΩXq ˆ ΩpΩXq ΩpΩX ˆ ΩXq

ΩpΩXqq

ΩpmX qˆΩpmX q mΩˆΩ

mΩX ΩpmX q

(2)
commutes since ΩpmXq : ΩpΩX ˆ ΩXq Ñ ΩpΩpXqq is a homomorphism of
group objects by Lemma 2.1.

Now pmΩX ˆ mΩXq ˝ s2,3 is the multiplication morphism of Ω2X ˆ Ω2X,
which also coincides with pΩppr1qˆΩppr2qq˝mΩXˆΩX ˝pΩppr1qˆΩppr2qq´1

by Remark 2.3.
Hence, identifying ΩpΩX ˆ ΩXq with Ω2X ˆ Ω2X, the diagram (2)

becomes a commutative diagram

Ω2X ˆ Ω2X ˆ Ω2X ˆ Ω2X

ΩpΩX ˆ ΩXq ˆ ΩpΩX ˆ ΩXq Ω2X ˆ Ω2X

ΩpΩXq ˆ ΩpΩXq ΩpΩX ˆ ΩXq

ΩpΩXqq

pmΩX ˆmΩX q˝s2,3m1
X ˆm1

X –

ΩpmX qˆΩpmX q mΩˆΩm1
X

mΩX

–

ΩpmX q

,

which contains the required diagram.

Corollary 2.6. The “group laws” mΩX and m1
X on Ω2X coincide and are

abelian.
In particular, Ω2 : Dpˇq Ñ Dpˇq factors through the category Dpˇq-Ab

of abelian group objects in Dpˇq since each homomorphism of group objects
between abelian group objects is a homomorphism of abelian group objects
and vice versa.

Proof. Consider the morphism

f :“ pr1 ˆ 0 ˆ 0 ˆ pr2 : Ω2X ˆ Ω2X Ñ Ω2X ˆ Ω2X ˆ Ω2X ˆ Ω2X.

Then we have pr1 ˝ pmΩX
ˆ mΩXq ˝ s2,3 ˝ f “ mΩX

˝ ppr1 ˆ 0q “ pr1 and
pr2 ˝ pmΩX

ˆ mΩXq ˝ s2,3 ˝ f “ mΩX
˝ ppr2 ˆ 0q “ pr1 since 0 Ñ Ω2X is the
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unit morphism for mΩX
. Hence we have pmΩX

ˆmΩXq˝s2,3˝f “ idΩ2XˆΩ2X

as these morphisms agree after composing with each of the projections.
Furthermore, we also have pr1 ˝ pm1

X ˆ m1
Xq ˝ f “ m1

X ˝ ppr1 ˆ 0q “ pr1
and pr2 ˝ pm1

X ˆ m1
Xq ˝ f “ m1

X ˝ ppr2 ˆ 0q “ pr1 since 0 Ñ Ω2X is also the
unit morphism for m1

X . Hence pm1
X ˆ m1

Xq ˝ f “ idΩ2XˆΩ2X as these agree
after composing with each of the projections.

In total, using the Eckmann–Hilton identity from the previous lemma,
we obtain

mΩX “ mΩX ˝ idΩ2XˆΩ2X

“ mΩX ˝ pm1
X ˆ m1

Xq ˝ f

“ m1
X ˝ pmΩX

ˆ mΩXq ˝ s2,3 ˝ f

“ m1
X ˝ idΩ2XˆΩ2X “ m1

X .

For the commutativity of mΩX “ m1
X we consider the morphism

g :“ 0 ˆ pr1 ˆ pr2 ˆ 0: Ω2X ˆ Ω2X Ñ Ω2X ˆ Ω2X ˆ Ω2X ˆ Ω2X.

Then we have pr1 ˝ pmΩX
ˆ mΩXq ˝ s2,3 ˝ g “ mΩX

˝ p0 ˆ pr2q “ pr2 and
pr2 ˝ pmΩX

ˆ mΩXq ˝ s2,3 ˝ g “ mΩX
˝ ppr1 ˆ 0q “ pr1, therefore pmΩX

ˆ

mΩXq ˝ s2,3 ˝ g “ pr2 ˆ pr1, i. e. the “swapping morphism”. On the other
hand, we also have pr1 ˝ pm1

X ˆ m1
Xq ˝ g “ m1

X ˝ p0 ˆ pr1q “ pr1 and
pr2 ˝pm1

X ˆm1
Xq˝g “ m1

X ˝ppr2 ˆ0q “ pr2, so pm1
X ˆm1

Xq˝g “ idΩ2XˆΩ2X .
Hence, the Eckmann–Hilton identity yields

mΩX “ mΩX ˝ idΩ2XˆΩ2X

“ mΩX ˝ pm1
X ˆ m1

Xq ˝ g

“ m1
X ˝ pmΩX

ˆ mΩXq ˝ s2,3 ˝ g

“ m1
X ˝ ppr2 ˆ pr1q

“ mΩX ˝ ppr2 ˆ pr1q,

which means that mΩX “ m1
X is indeed a commutative multiplication.
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3 Applications
Besides the intristic motivation for studying it, the loop functor can be

used to show that stable derivators are additive.

Corollary 3.1. Let D be a stable derivator. Then Dpˇq is an additive
category.

Proof. First of all, Dpˇq has all products since D is a derivator. Further-
more, we know that Ω (and hence Ω2) is an equivalence of categories since
D is stable.

Now note that Ω2 : Dpˇq Ñ Dpˇq factors through the category Dpˇq-Ab
of abelian group objects in Dpˇq by Corollary 2.6 since morphisms between
abelian group objects are simply homomorphisms of underlying group ob-
jects.

Hence Dpˇq » Dpˇq-Ab. Now the category of abelian group objects in
a category with finite products is an additive category (see Corollary B.10).

Furthermore, note that one can construct the “shifted derivator” DA for
a given small category A, which is given by DApBq “ DpA ˆ Bq on small
categories, pu˚qD

A
“ pidA ˆ uqD on functors and pγ˚qD

A
“ pididA

ˆ γqD

on natural transformations (see [2, Proposition 7.32]). Then DA is pointed
resp. stable if D is so, hence we can obtain statements about DpAq » DApˇq

by considering DA as a derivator.

Remark 3.2. Let A be a small category.
Then the shifted loop functor

ΩA :“ pidA ˆ π q˚ ˝ pidA ˆ 8q! : DpAq Ñ DpAq

factors through DpAq-Grp and the double shifted loop functor
`

ΩA
˘2 factors

even through DpAq-Ab.
Moreover, DpAq is an additive category if D (and hence DA) is stable.
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A The Segal Condition
In this appendix we will justify Corollary 1.7 by showing that a certain

type of simplicial objects give rise to monoid objects.
We start with a review of simplicial objects.

Notation A.1. Let ∆ be the simplex category, i. e. the category of non-
empty finite ordinal numbers. For n P N set rns “ t0, . . . , nu.

For n P N and i P t0, . . . , nu we fix notation for the following morphisms
in ∆:

• δn,i : rn ´ 1s Ñ rns, n ą 0, is the unique monomorphism which “skips
i”,

• σn,i : rn ` 1s Ñ rns is the unique epimorphism which “collapses i ` 1
to i”,

• ϕn,i : r1s Ñ rns, i ă n, is the inclusion of ti, i ` 1u.

In most cases, we will omit the index n if it is clear from the context.
Given a category C and a simplicial object X : ∆op Ñ C, we will denote

Xprnsq by Xn. Then the above maps induce:

• dX
i :“ Xpδiq : Xn Ñ Xn´1, the i-th face map,

• sX
i :“ Xpσiq : Xn Ñ Xn`1, the i-th degeneracy map,

• fX
i :“ Xpϕiq : Xn Ñ X1.

The simplicial object in consideration will mostly be clear from the context
and we will omit the upper index X in these cases.

In a certain sense, face maps and degeneracy maps determine a simplicial
object uniquely.

Remark A.2. All morphisms in ∆ can be written as a composition of
suitable δi’s and σi’s. These maps satisfy the simplicial relations:

• δj ˝ δi “ δi ˝ δj´1 for i ă j,

• σj ˝ δi “ δi ˝ σj´1 for i ă j,

• σj ˝ δi “ id for i “ j and i “ j ` 1,

• σj ˝ δi “ δi´1 ˝ σj for i ą j,

• σj ˝ σi “ σi´1 ˝ σj for i ą j.

Furthermore, all relations between the δi’s and the σi’s are implied by
these relations in the following sense:

23



For a category C, a collection pXnqnPN of objects in C with morphisms
di : Xn´1 Ñ Xn for n ą 0, 0 ď i ď n and si : Xn Ñ Xn`1 for 0 ď i ď n
yields a simplicial object X s. t. di “ Xpδiq and si “ Xpσiq iff the simplicial
identities (which are induced by the simplicial relations) hold:

• di ˝ dj “ dj´1 ˝ di for i ă j,

• di ˝ sj “ sj´1 ˝ di for i ă j,

• di ˝ sj “ id for i “ j and i “ j ` 1,

• di ˝ sj “ sj ˝ di´1 for i ą j,

• si ˝ sj “ sj ˝ si´1 for i ą j.

A relevant fact in the theory of simplicial sets is that a simplicial set
X : ∆op Ñ Set is isomorphic to the nerve of a (small) category if and only
if the Segal condition is satisfied, i. e. for any n P N, the natural map

Xn

śn´1
i“0 fi

ÝÝÝÝÝÑ X
ˆX0 n
1

is an isomorphism. Since (small) categories with only one object can be
identified with monoids, this means that simplicial sets X which have exactly
one 0-simplex (i. e. X0 – tˇu) and fulfill the Segal condition can also be
identified with monoids.

In the following we want to prove a similar statement for simplicial ob-
jects in a category. We know that, in general, fiber products don’t exist in
values of a derivator, but products do. Therefore we will restrict our atten-
tion to simplicial objects X with X0 – ˇ for a terminal object ˇ, so that
we have Xn

1 – X
ˆX0 n
1 , which makes calculations easier.

In the rest of this appendix C will be a category which has all finite
products (hence an terminal object ˇ) and X : ∆op Ñ C a simplicial object
in C.

Definition A.3. X is called special if X0 – ˇ and X satisfies the Segal

condition, i. e. Xn

śn´1
i“0 fi

ÝÝÝÝÝÑ Xn
1 is an isomorphism for all n P N.

We will denote the category of special simplicial objects in Cwith natural
transformations between those as morphisms by psCqsp.

First we show that special simplicial objects give rise to monoid objects.

Proposition A.4. Let X be a special simplicial object in C.
Then X1 has a monoid object structure given by the multiplication mor-

phism

mX : X1 ˆ X1
pf0ˆf1q´1
ÝÝÝÝÝÝÑ X2

d1
ÝÑ X1
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and the unit morphism

eX : ˇ
–
ÝÑ X0

s0
ÝÑ X1,

where we will omit the index X if it is clear from the context.

Proof. For associativity we consider the diagram

X1 ˆ X1 ˆ X1

X2 ˆ X1 X1 ˆ X2

X1 ˆ X1 X3 X1 ˆ X1

X2 X2

X1

pf0˝pr1qˆpf1˝pr1qˆpr2

pd1˝pr1qˆpr2

pr1ˆpf0˝pr2qˆpf1˝pr2q

pr1ˆpd1˝pr2q

f0ˆf1ˆf2

d3ˆf2 f0ˆd0

d1 d2
f0ˆf1

d1

f0ˆf1

d1

.

The lower parallelogram commutes as d1˝d2 “ d1˝d1 is one of the simpli-
cial identities. Note that the upper left and upper right sides of the diagram
are symmetric, so we will only show that the upper left part is commutative
since the commutativity of the other part can be shown similarly.

For the upper left triangle we have

pr1 ˝ ppf0 ˝ pr1q ˆ pf1 ˝ pr1q ˆ pr2q ˝ pd3 ˆ f2q “ pf0 ˝ pr1q ˝ pd3 ˆ f2q

“ f0 ˝ d3 “ f0

“ pr1 ˝ pf0 ˆ f1 ˆ f2q

since ϕ0 “ δ3 ˝ ϕ0 : r1s Ñ r2s Ñ r3s. Similarly, we also have

pr2 ˝ ppf0 ˝ pr1q ˆ pf1 ˝ pr1q ˆ pr2q ˝ pd3 ˆ f2q “ f1 ˝ d3

“ f1 “ pr2 ˝ pf0 ˆ f1 ˆ f2q

since ϕ1 “ δ3 ˝ ϕ1 : r1s Ñ r2s Ñ r3s. For the third factor we have

pr3 ˝ ppf0 ˝ pr1q ˆ pf1 ˝ pr1q ˆ pr2q ˝ pd3 ˆ f2q “ pr2 ˝ pd3 ˆ f2q

“ f2 “ pr3 ˝ pf0 ˆ f1 ˆ f2q.

Hence ppf0 ˝ pr1q ˆ pf1 ˝ pr1q ˆ pr2q ˝ pd3 ˆ f2q “ f0 ˆ f1 ˆ f2 since these
morphisms coincide after composing with each of the projections.

For the middle left triangle we have

pr1 ˝ ppd1 ˝ pr1q ˆ pr2q ˝ pd3 ˆ f2q “ pd1 ˝ pr1q ˝ pd3 ˆ f2q

“ d1 ˝ d3 “ f0 ˝ d1 “ pr1 ˝ pf0 ˆ f1q ˝ d1

25



since δ1 ˝ ϕ0 “ δ3 ˝ δ1 : r1s Ñ r2s Ñ r3s. We also have

pr2 ˝ ppd1 ˝ pr1q ˆ pr2q ˝ pd3 ˆ f2q “ pr2 ˝ pd3 ˆ f2q

“ f2 “ f1 ˝ d1 “ pr2 ˝ pf0 ˆ f1q ˝ d1

since ϕ2 “ δ1 ˝ϕ1 : r1s Ñ r2s Ñ r3s. Hence the morphisms ppd1 ˝pr1q ˆpr2q ˝

pd3 ˆ f2q and pf0 ˆ f1q ˝ d1 coincide as morphisms into the product X1 ˆ X1.
Inverting the isomorphisms f0 ˆ f1 ˆ f2, pf0 ˝ pr1q ˆ pf1 ˝ pr1q ˆ pr2,

pr1 ˆ pf0 ˝ pr2q ˆ pf1 ˝ pr2q and f0 ˆ f1, we obtain a commutative diagram

X1 ˆ X1 ˆ X1

X2 ˆ X1 X1 ˆ X2

X1 ˆ X1 X3 X1 ˆ X1

X2 X2

X1

–

pd1˝pr1qˆpr2

–

pr1ˆpd1˝pr2q

–

d3ˆf2 f0ˆd0

d1 d2
–

d1

–

d1

,

which contains the required associativity diagram.
In order to show that e is a right unit for m, we consider the diagram

X2

X1 X1 ˆ X1 X1

f0ˆf1
d1

idˆpe˝πq

s1

m

.

Then the triangle on the right commutes by the definition of m.
On the left side we have

pr1 ˝ pf0 ˆ f1q ˝ s1 “ f0 ˝ s1 “ idX1

since idr1s “ σ1 ˝ ϕ0 : r1s Ñ r2s Ñ r1s. For the second factor we have

pr2 ˝ pf0 ˆ f1q ˝ s1 “ f1 ˝ s1 “ s0 ˝ d1

since δ1 ˝ σ0 “ σ1 ˝ ϕ1 : r1s Ñ r1s, and s0 ˝ d1 “ e ˝ π since π is the unique
map into the terminal object ˇ and e : ˇ

–
ÝÑ X0

s0
ÝÑ X1 by definition. Hence

the left triangle is also commutative since pf0 ˆ f1q ˝ s1 and idX1 ˆ pe ˝ πq

agree on both factors.
The commutativity of the above diagram yields m ˝ pidX1 ˆ pe ˝ πqq “

d1 ˝ s1 “ idX1 , where the latter equality is a simplicial identity. Hence e is
indeed a right unit for m.
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Now one can analogously show that the diagram

X2

X1 X1 ˆ X1 X1

f0ˆf1
d1

pe˝πqˆid

s2

m

is also commutative. Hence e is also a left unit for m.

Next, we want to see that this assignment is functorial.
Lemma A.5. Let X, Y be special simplicial objects in C, and γ : X Ñ Y
a morphism of simplicial objects, i. e. a natural transformation between the
functors X, Y : ∆op Ñ C.

Then we have
n´1
ź

i“0
pγ1 ˝ priq “

˜

n´1
ź

i“0
fY

i

¸

˝ γn ˝

˜

n´1
ź

i“0
fX

i

¸´1

: Xn
1 Ñ Xn Ñ Yn Ñ Y n

1

for all n P N.
Proof. For n “ 0 the statement follows from the fact that there is a unique
morphism between the terminal objects X0 and Y0.

For n ą 0 we check the equality componentwise. Indeed, for i0 P

t0, . . . , n ´ 1u we have

pri0 ˝

˜

n´1
ź

i“0
fY

i

¸

˝ γn ˝

˜

n´1
ź

i“0
fX

i

¸´1

“ fY
i0 ˝ γn ˝

˜

n´1
ź

i“0
fX

i

¸´1

“ γ1 ˝ fX
i0 ˝

˜

n´1
ź

i“0
fX

i

¸´1

“ γ1 ˝ pri0

“ pri0 ˝

˜

n´1
ź

i“0
pγ1 ˝ priq

¸

,

where the second equality follows from the naturality of γ.

Proposition A.6. Let γ : X Ñ Y be a morphism between special simplicial
objects.

Then γ1 : X1 Ñ Y1 is a morphism of monoid objects.
Proof. By the naturality of γ, the diagram

ˇ ˇ

X0 Y0

X1 Y0

id

– –

γ0

sX
0 sY

0
γ1
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commutes, so γ1 is compatible with the unit.
For the compatibility with the multiplication we consider the diagram

X1 ˆ X1 X2 Y2 Y2 ˆ Y1

X1 Y1
mX

pfX
0 ˆfX

1 q´1 γ2

dX
1

fY
0 ˆfY

1

dY
1

mY
γ1

,

which is commutative by the naturality of γ and the definition of mX resp.
mY . Now

pfY
0 ˆ fY

1 q ˝ γ2 ˝ pfX
0 ˆ fX

1 q´1 “ pγ1 ˝ pr1q ˆ pγ1 ˝ pr2q,

by the previous lemma, which implies that the above diagram witnesses the
compatibility of γ1 with the multiplication.

Proposition A.4 and Proposition A.6 can be summarized as follows:

Corollary A.7. The functor p q1 : psCqsp Ñ C factors through the category
C-Mon of monoid objects in C.

In fact, p q1 defines an equivalence of categories from psCqsp to C-Mon,
where a quasi-inverse is given as follows:

For M P obpC-Monq with “multiplication” m : M ˆM Ñ M and “unit”
e : ˇ Ñ M , we define a (special) simplicial object XM with XM

n “ Mn for
n P N, where the structure morphisms are given by

dXM

i “

$

’

’

&

’

’

%

śn
j“2 prj i “ 0

śn´1
j“0 prj i “ n

´

śi´2
j“1 prj

¯

ˆ m ˆ

´

śn
j“i`1 prj

¯

otherwise

for n P Ną0 and 0 ď i ď n resp.

sXM

i “

˜

i
ź

j“1
prj

¸

ˆ pe ˝ πq ˆ

˜

n
ź

j“i`1
prj

¸

for n P N.
Given a morphism f : M Ñ N of monoid objects in C, we let γf : XM ñ

XN be given by

γf
n : XM

n “ Mn
śn

i“0pf˝priq
ÝÝÝÝÝÝÝÝÑ Nn “ XN

n

for all n P N.
Since we don’t use this statement we omit the tedious proof of the fact

that the given is assignment is a well-defined functor which is indeed a
quasi-inverse for p q1 : psCqsp Ñ C-Mon.
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B Additive Categories
In this appendix we discuss certain descriptions of additive categories

which lead to the additivity of stable derivators (see Corollary 3.1).
We begin with basic definitions and notations.

Definition B.1. A preadditive category is a category A s. t.

(i) A is pointed, i. e. has a zero object, which is an object 0 which is both
initial and terminal,

(ii) binary (and hence all finite) products and coproducts exist in A,

(iii) for any X, Y P ob A, the morphism

pidX ˆ 0X,Y q > p0Y,X ˆ idY q : X > Y Ñ X ˆ Y

is an isomorphism, where 0X,Y : X Ñ 0 Ñ Y resp. 0Y,X : Y Ñ 0 Ñ X
is the unique morphism which factors through a zero object.

Notation B.2. • Biproducts in the above sense will be denoted by ‘ .

• If X, Y , X 1 resp. Y 1 are objects of a preadditive category and fX,X 1 : X Ñ

X 1, fY,X 1 : Y Ñ X 1, fX,Y 1 : X Ñ Y 1 resp. fY,Y 1 : Y Ñ Y 1 are some mor-
phisms, then we denote the morphism

pfX,X 1 ˆ fX,Y 1q > pfY,X 1 ˆ fX,X 1q : X ‘ Y Ñ X 1 ‘ Y 1

by
ˆ

fX,X 1 fY,X 1

fX,Y 1 fY,Y 1

˙

.

Note that, using the universal properties of products and coproducts,
any morphism f : X ‘ Y Ñ X 1 ‘ Y 1 can be written as

f “

ˆ

prX 1 ˝ f ˝ inX prX 1 ˝ f ˝ inY

prY 1 ˝ f ˝ inX prY 1 ˝ f ˝ inY

˙

.

Matrices of different sizes are constructed similarly.

• We will also use common abuses of notation such as denoting an iden-
tity morphism by 1 or a morphism that factors through a zero object
by 0.

Next, we want to give an alternative description of preadditive categories.

Remark B.3. A preadditive category is enriched over the category AbMon
of abelian monoids. Indeed, for any X, Y P ob A, setting

f ` g : X

´

1 1
¯

ÝÝÝÝÝÑ X ‘ X

¨

˝

f 0
0 g

˛

‚

ÝÝÝÝÝÑ Y ‘ Y

¨

˝

1
1

˛

‚

ÝÝÝÑ Y
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for f, g P HomApX, Y q yields an abelian monoid structure on HomApX, Y q

with neutral element 0X,Y and for any X, Y, Z P ob A, the composition map

˝ : HomApY, Zq ˆ HomApX, Y q Ñ HomApX, Zq

is bilinear w. r. t. this “addition operation”.
Furthermore, a straightforward computation shows that composing mor-

phisms corresponds to multiplying their matrix representations.

Proposition B.4. Let A be a category that has finite products.
Then A is preadditive if and only if it is enriched over the category

AbMon of abelian monoids, i. e. if all morphism sets of A have an abelian
monoid structure s. t. composition is bilinear.

Proof. A preadditive category has finite products by definition and Re-
mark B.3 means that it is also enriched over AbMon.

Now let A be a category that has finite products and is enriched over
AbMon. For X, Y P ob A let the “addition” in HomApX, Y q be denoted by
`X,Y and its unit by 0X,Y .

A has in particular a terminal object ˇ. The monoid structure on
HomApˇ, ˇq is trivial since ˇ is a terminal object and any monoid with
only one element is trivial. In particular, we have idˇ “ 0ˇ,ˇ.

For all X P ob A, HomApˇ, Xq has a monoid structure, hence is not
empty. Now for any f : ˇ Ñ X we have f “ f ˝ idˇ “ f ˝ 0ˇ,ˇ “ 0ˇ,X

by the bilinearity of composition. Hence HomApˇ, Xq “ t0ˇ,Xu for all
X P ob A, i. e. ˇ is also an initial object and therefore A is pointed. From
now on 0 will denote a zero object in A. Note that for any X, Y P ob A,
0X,Y is the unique morphism that factors through 0.

Let X, Y P ob A. We want to endow X ˆ Y with the structure of a
coproduct of X and Y s. t. pidX ˆ 0X,Y q > p0Y,X ˆ idY q “ idXˆY . This
enforces the structure morphisms of the coproduct to be in1 :“ idX ˆ 0X,Y

and in2 :“ 0Y,X ˆ idY .
Given Z P ob A and morphisms f1 : X Ñ Z and f2 : Y Ñ Z, define

f1 > f2 to be pf1 ˝ pr1q `XˆY,Z pf2 ˝ pr2q. Then we have indeed

ppf1 ˝ pr1q `XˆY,Z pf2 ˝ pr2qq ˝ in1 “

ppf1 ˝ pr1q `XˆY,Z pf2 ˝ pr2qq ˝ pidX ˆ 0X,Y q “

ppf1 ˝ pr1q ˝ pidX ˆ 0X,Y qq `X,Z ppf2 ˝ pr2qq ˝ pidX ˆ 0X,Y qq “

pf1 ˝ idXq `X,Z pf2 ˝ 0X,Y q “

f1 `X,Z 0X,Z “ f1

and similarly

ppf1 ˝ pr1q `XˆY,Z pf2 ˝ pr2qq ˝ in2 “

ppf1 ˝ pr1q ˝ p0Y,X ˆ idY qq `Y,Z ppf2 ˝ pr2qq ˝ p0Y,X ˆ idY qq “

0Y,Z `Y,Z f2 “ f2.
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Now let f 1 : X ˆY Ñ Z be another morphism s. t. f 1 ˝ in1 “ f1 and f 1 ˝ in2 “

f2.
We first claim that

idXˆY “ ppr1 ˆ 0XˆY,Y q `XˆY,XˆY p0XˆY,X ˆ pr2q.

Indeed, by the bilinearity of composition we have

pr1 ˝ pppr1 ˆ 0XˆY,Y q `XˆY,XˆY p0XˆY,X ˆ pr2qq “

ppr1 ˝ ppr1 ˆ 0XˆY,Y qq `XˆY,X ppr1 ˝ p0XˆY,X ˆ pr2qq “

pr1 `XˆY,X 0XˆY,X “ pr1

and similarly

pr2 ˝ pppr1 ˆ 0XˆY,Y q `XˆY,XˆY p0XˆY,X ˆ pr2qq “ pr2.

Hence the two morphisms coincide since they agree on both factors.
Moreover, note that we have

pr1 ˝ pidX ˆ 0X,Y q ˝ pr1 “ pr1

and
pr2 ˝ pidX ˆ 0X,Y q ˝ pr1 “ 0X,Y ˝ pr1 “ 0XˆY,Y ,

which means that in1 ˝ pr1 “ pidX ˆ 0X,Y q ˝ pr1 “ pr1 ˆ 0XˆY,Y since
these morphisms agree on both factors. Similarly, we also have in2 ˝ pr2 “

p0Y,X ˆ idY q ˝ pr2 “ 0XˆY,X ˆ pr2.
Again using the bilinearity of composition, these yield

f 1 ˝ idXˆY “ f 1 ˝ pppr1 ˆ 0XˆY,Y q `XˆY,XˆY p0XˆY,X ˆ pr2qq

“ pf 1 ˝ ppr1 ˆ 0XˆY,Y qq `XˆY,XˆY pf 1 ˝ p0XˆY,X ˆ pr2qq

“ pf 1 ˝ in1 ˝ pr1q `XˆY,XˆY pf 1 ˝ in2 ˝ pr2q

“ pf1 ˝ pr1q `XˆY,XˆY pf2 ˝ pr2q “ f1 > f2.

Hence in1 and in2 do endow X ˆ Y with a suitable coproduct structure.

Using this characterization we obtain a generic class of preadditive cat-
egories.

Proposition B.5. Let C be a category which has finite products.
Then the category C-AbMon of abelian monoid objects (with homomor-

phisms of monoid objects between them) is a preadditive category.

Proof. First we note that C-AbMon can alternatively be described as fol-
lows:

obpC-AbMonq “ tM P ob C | HomCp , Mq factors through AbMonu ,
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and

HomC-AbMonpM, Nq “ tf P HomCpM, Nq |

pf˚qX : HomCpX, Mq Ñ HomCpX, Nq

is a morphisms of (abelian) monoids for all
X P ob Cu

for any M, N P obpC-AbMonq.
Hence, for any M, N P obpC-AbMonq, HomC-AbMonpM, Nq has an

abelian monoid structure given by pointwise addition and units on the level
of represented functors. Then compisition is bilinear w. r. t. this addition
since morphisms between monoid objects are chosen to preserve the addition
on the homomorphism sets.

This means that C-AbMon enriched over AbMon and hence a pread-
ditive category by the previous proposition.

Remark B.6. Remark B.3 implies also that any object X of a preadditive
category has the structure of an abelian monoid object given by the codi-
agonal morphism ∇ :“ p 1 1 q : X ‘ X Ñ X and the “unit” 0 Ñ X. Dually,
X has also the structure of a cocommutative comonoid object given by the
diagonal morphism ∆ :“ p 1

1 q : X ‘ X Ñ X and the “counit” X Ñ 0.

In fact, for a preadditive category A, the functor AÑ A-AbMon which
endows an object with the above abelian monoid structure is an equivalence
of categories. However, we will neither use nor prove this statement.

As the prefix “pre” suggests, preadditive categories are not quite what
we are looking for. We get to the concept of additive categories by requiring
that additive inverses of morphisms exist.

Proposition B.7. Let A be a preadditive category.
Then the following are equivalent:

(i) For any X P ob A, the “shear morphism”
ˆ

1 1
0 1

˙

: X ‘ X Ñ X ‘ X

is an isomorphism.

(ii) For any X P ob A, the identity morphism idX has an additive inverse
in EndApAq.

(iii) For any X, Y P ob A, each f P HomApX, Y q has an additive inverse.

(iv) For any X P ob A, the abelian monoid object pX, ∇, 0 Ñ Xq is an
(abelian) group object.
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(v) For any X P ob A, the cocommutative comonoid object pX, ∆, X Ñ 0q

is a (cocommutative) cogroup object.

Proof. “piq ñ piiq”: Let the inverse of the shear morphism of X be given by
ˆ

j1,1 j1,2
j2,1 j2,2

˙

: X ‘ X Ñ X ‘ X.

Then we have
ˆ

1 0
0 1

˙

“

ˆ

1 1
0 1

˙ ˆ

j1,1 j1,2
j2,1 j2,2

˙

“

ˆ

j1,1 ` j2,1 j1,2 ` j2,2
j2,1 j2,2.

˙

Hence j1,2 “ 0X,X and j1,1 “ j2,2 “ idX . This yields

idX ` j1,2 “ j2,2 ` j1,2 “ 0X,X ,

so j1,2 is an additive inverse of idX .
“piiq ñ piiiq”: Let ´idX be an additive inverse for idX . Then the

bilinearity of composition yields

f `f ˝p´idXq “ f ˝ idX `f ˝p´idXq “ f ˝pidX `p´idXqq “ f ˝0X,X “ 0X,Y ,

i. e. f ˝ p´idXq is an additive inverse for f .
“piiiq ñ pivq”: Note that X is a group object in A if and only if its rep-

resented functor HomAp , Xq factors through the category Grp of groups.
Since X is an abelian monoid object, we already know that HomAp , Xq

factors through AbMon. Now the fact that for each Y P ob A each f P

HomApY, Xq has an additive inverse implies that the abelian monoids
pHomApY, Xq , `Y,X , 0Y,Xq are in fact abelian groups. Since all monoid ho-
momorphisms between groups are already homomorphisms of groups, this
means that HomAp , Xq factors through the category of (abelian) groups.

“pivq ñ pvq”: If X is a group object with the “multiplication” given by
∇, there exists a morphism j : X Ñ X s. t.

0X,X “
`

1 1
˘

ˆ

1
j

˙

“ idX ˝ idX ` idX ˝ j “ idX ` j.

Hence for comonoid structure on X we obtain

`

1 j
˘

ˆ

1
1

˙

“ idX ˝ idX ` j ˝ idX “ idX ` j “ 0X,X .

A similar argument shows that the fact that j is also a “left inverse for
the multiplication of X” implies that j is also a “left inverse for the comul-
tiplication of X”. In total, we obtain that pX, ∆, X Ñ 0, jq is a cogroup
object.
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“pvq ñ piq”: Let j : X Ñ X be the “coinverse” morphism w. r. t. ∆. Then
calculations similar to the ones in the proof of the previous implication yield
that idX ` j “ 0X,X “ j ` idX . Hence we obtain

ˆ

1 1
0 1

˙ ˆ

1 j
0 1

˙

“

ˆ

1 ` 0 j ` 1
0 ` 0 0 ` 1

˙

“

ˆ

1 0
0 1

˙

and
ˆ

1 j
0 1

˙ ˆ

1 1
0 1

˙

“

ˆ

1 ` 0 1 ` j
0 ` 0 0 ` 1

˙

“

ˆ

1 0
0 1

˙

.

Since idX‘X “ p 1 0
0 1 q, we see that the shear morphism is an isomorphism.

Definition B.8. A preadditive category is called additive if it satisfies one
(and hence all) of the conditions in the previous proposition.

Additive categories also have an alternative characterization similar to
the one in Proposition B.4 for preadditive categories.

Corollary B.9. A category A which has finite products is additive if and
only if it is enriched over the category Ab of abelian groups.

Proof. If A is additive then the condition piiiq in Proposition B.7 means
that A is enriched not only over AbMon, but even over Ab since additive
inverses exist in homomorphism monoids and (bi)linear maps of abelian
groups are exactly (bi)linear maps of underlying monoids.

Conversely, if A is enriched over Ab, then A is preadditive by Proposi-
tion B.4 and the condition piiiq in Proposition B.7 is fulfilled since additive
inverses in all homomorphism monoids exist.

This characterization yields a generic class of examples which is used in
the proof of Corollary 3.1.

Corollary B.10. Let C be a category which has finite products.
Then the category C-Ab of abelian group objects (with homomorphisms

of group objects between them) is an additive category.

Proof. Just as the previous corollary, this follows immediately from Propo-
sition B.4 and the condition piiiq in Proposition B.7.

Lastly, let us note that as in the case of preadditive categories, an addi-
tive category A is in fact equivalent to the category of abelian group objects
in A.
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