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Zusammenfassung

Derivatore sind abstrakte Mittel, mit denen man Homotopietheorie be-
treiben kann. Insbesondere kénnen viele Aussagen aus der (klassischen) Ho-
motopietheorie fiir gewisse Arten von Derivatoren formuliert und bewiesen
werden. In dieser Arbeit geht es um eine solche Aussage, ndmlich eine
Derivatorversion der Tatsache, dass Schleifenraume in der Homotopiekate-
gorie der topologischen Rdume eine kanonische Gruppenstruktur besitzen.
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Introduction

Motivation

Derivators provide an abstract framework for homotopy theory. In par-
ticular, many statements from (classical) homotopy theory can be formu-
lated and proven for certain kinds of derivators. This thesis is about one
such statement, namely a “derivator version” of the fact that the loop spaces
have a canonical group object structure in the homotopy category of topo-
logical spaces.

About This Thesis

The thesis consists of three regular sections and two appendices. In the
brst secfion I deal with the main topic of this thesis, namely the fact that
loop objects in values of a pointed derivator are group objects. The main
reference for this section is [ll]. The kecond secfion covers the case of double
loop objects and depicts an Eckmann—Hilton argument showing that double
loop objects in values of a pointed derivator are indeed abelian group objects.
It is followed by a very short Eecfiod containing a few applications in the
general theory of derivators. The is dedicated to the Segal
condition which is used to decide if a given simplicial object is a category
object. In the Becond appendix I try to give a clear and precise description of
preadditive and additive categories. It is not much more than an elaboration
of Subsection 2.1 of [2].

I omitted a general introduction to the theory of derivators, partially
because this thesis would be much longer if it introduced every non-trival
concept or statement it used and also because there are a few rather elemen-
tary introductory texts about this topic (e.g. [2]) which are more detailed
than what I could write for this thesis. However, it would be convenient for
the reader to get familiar with derivators before reading this thesis.

Even though the introduction is written from a first person perspective,
the “mathematical we” will accompany the reader in the main part of the
thesis.

Acknowledgments and Thanks






0 Preparation

Notations

Notation 0.1. Let % denote the category which has a unique object % with
Endg () = ids, which is a terminal object in the category Cat of small
categories.

Notation 0.2. Let 6 be a category which has products and coproducts.

For a family (X;);e; of objects in € we will denote the structure mor-
phisms of the product by pr;: [[;c; Xi — X;. Given a family of morphisms
(fi: Y = X;)ier in 6, we will denote the induced morphism to the product
by [[;e; fir Y = [ Lie; Xi- If I = {1,...,n} is finite, the product will alter-
natively be denoted by X7 x --- x X, and the morphism into the product
which is induced by the family (fi,..., fn) by f1 x -+ x fn.

Similarly, we will write in;: X; — [ [,c; X; for the structure morphisms
of a coproduct and [[,.;¢i: [[,c; Xi — Y for the morphism from the co-
product which is induced by the family (g;: X; — Y );e; of morphisms. In
the finite case X111---11.X,, resp. g111- - -11g, will be the alternative notation.

A Review of Derivators



1 Loop Objects

In this section we prove our main result, i.e. show that loop objects in
values of pointed derivators are group objects.
Let & be a pointed derivator throughout this section.

Simplicial Objects which Induce Loop Objects

The crucial point of our discussion of the loop objects is the fact that
they are induced by certain families of objects which fulfill slightly more
general conditions than that for a simplicial object.

Notation 1.1. o Let (n) = {0,...,n} for n € N. We will consider
these as objects of the category Fin of finite sets or (equivalently)
finite discrete categories.

e Let _": Fin — Cat be the cocone functor, i. e. the functor which adds
a terminal object o to a given category. Let i, = (n)".

Definition 1.2. For a € Fin let w, be the composition

lim,

wa: D(%) =5 D(a™) D(%).

For n € N we will abuse notation and write w;, for w,,. In particular,
for the loop functor defined in [?, Definition 8.17] we have

lim

Q> wp: D(x) 2 D) —5 D).
Lemma 1.3. The assignment a — w, can be made into a “functor”
w: Fin®®? — ENDCAT(Q)(%)),

i. e. for each a € obFin, w, is an endofunctor of D(¥%) and we can assign
each map f: a — b between finite sets to a natural transformation wy: w, =
wp so that this assignment is compatible with compositions and identities.

Proof. For a € obFin, w, is an endofunctor of & (%) by construction.
For functoriality, we consider a,b € obFin and f: a — b. Then we have
two diagrams

¥ — ¥ D(%) —— D(x%)

ool D loo OO!J x JOO!

o L D(a™) oy D7) > (1)
L] e N e

o F D(%) —— D(%)

10



where the second one is obtained from the first by applying &9 and then
using the appropriate mates.

Now we want to show that the upper natural transformation on the right
is an isomorphism and then define the natural transformation wy: wy = w,
as the pasting of the two squares on the right.

Note that we can detect such isomorphisms pointwise. In order to do
that, we consider an x € ob(a), which yields a diagram

(0/x) —— % *
Wl Y Joo e Joo .
¥ = a® IS b>

Then we know that the mate transformation m7* = z*o0, is an iso-
morphism since the square on the left is a slice square and hence homotopy
exact. Futhermore, we have

O x# 0
* xzoo'

(0/z) = {

Since f¥(z) = oo iff x = oo, this yields that the pasting of the two squares
is a also slice square, hence homotopy exact, which means that the mate
transformation m7* = (f%(x))*o0; is an isomorphism. Hence, in total, we
obtain that the mate transformation z*00; = (f* (z))*o0; is an isomorphism.

We can now define wy: w, = w, to be the pasting of the inverse of co; =
(f7)*oor with limps = lim,s (f%)*. This construction is compatible with
composition of maps since mates are compatible with pastings. Furthermore,
identities are mapped to identites since all the natural transformations in
() are identities if f is an identity map. O

Corollary 1.4. For X € ob(D (%)), (wnX)nen can be viewed as a simplicial
object since the simplex category A is a subcategory of Fin (which is not

full).

Loop Objects as Monoid Objects

Our next step is showing that the simplicial objects associated with loop
objects are trivial in the zeroth level and satisfy the Segal condition, which
means that loop objects are monoid objects.

Remark 1.5. For X € ob(2(%)) we have wpX =~ 0*c0, X since 0 is the
terminal object of {0), and hence wy = 0 since c0: % — (0) is a cosieve.

Proposition 1.6. Let n > 1. We define i,: (n —1) — (n) to be the inclu-
sion and i), : (1) — {n) to be the function with i, (0) = n—1 resp. i, (1) = n.

Then the natural transformation ou,: w, = wn_1 X w1 nduced by the
functor ky, == i> 14" 1, 1111y — 1, is an isomorphism.
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Proof. Let J, be the category which is obtained from _, by adding two
objects wq, wy with morphisms wg — k for 0 < k < n — 1 resp. w; — k for
n—1 < k < n (and resulting compositions), and let j,: J,, — J, denote its
inclusion functor.

Let _ be the full subcategory of J,, containing wp, wy and n — 1 (which
is isomorphic to _I1), and let I,, denote its inclusion functor. Since n — 1 is
terminal in _J, we will denote it also by co. Note that [,, has a right adjoint
rn, given by

wo x € {wy,0,...,n—2}
ro(z) = < wy x € {wy,n}
n—1 ze{n—1,0}
for = € ob J,, which defines the images of morphisms uniquely. Hence we
have [ >~ (7).

Then, using the natural equivalence @ (ALB) ~ D(A) x D(B) for A, B €

ob Cat and appropriate mates, we obtain a diagram

(%) UV G et s)
(c0n ) rs (00p—1110071 )y

*
D(n) s Bt 11 1)

(dn)s = (Tp—11171)
(wollwy )* (7senise )
D(Jp) — D(¥ U %) —— D(%)

Ur(rn) s =7 (wollw1 )5 Z J{id*

D) — L gy T g

Under the equivalences mentioned above the upper natural transforma-
tion is given by

(on1)r x (o) = ()" % (57)7) (o)

which is the product of the natural transformations which occur in the
definition of w;, resp. w; (see (0) in the proof of Lemma T3). Hence
it is an isomorphism as product of two natural isomorphisms. Further-
more, the right square in the last row commutes up to isomorphism since
7r1(w0 le) = Txlx%-

All in all, the diagram above yields a natural transformation from

(71) s ()5 () (00m )1 = (70) (000 )1 = w0y

to
(Tserise ) s (Trn—11071 ) 5 (005 — 111001 )1 = ((7—1) % (90n—1)1) X (1) % (001)1) = wp—1 Xw1
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which is the «, mentioned in the statement of this proposition. We now
want to show that (certain restrinctions of) the natural transformations in
the remaining two squares are isomorphisms, which will imply that «a, is an
isomorphism.

For the middle square we consider diagrams of the form

Pz, _qUmy

kn
(2/(Tpoy limy)) 2y R

W(I/(Wn_luﬁ))l = wn,luml = Jjn

for € ob(% 11 %) = {*q, *1}.
Then we have

(%0/(Tp—1U71)) = Jp—1 and  (%1/(mp—1 7)) = 1y

where under this identification pug r,_i1r, T€SP. Dxy m,_iiim 1S given by the
inclusion ¢g resp. ¢1 of the corresponding category. Since the left square is a
slice square, this means that

#0 (M1 U1 ) s = (Tag/(m_ytimn)) )5 (Prg mpatimy )™ = (1) s

and
#1 (M1 U0 )% = (T /(y1imy ) (P mpgiimy )™ 2= (1) 0]

are isomorphisms.
On the other hand, we also have

(wo/jn) = Jp—1 and  (wi/jn) = J1,

where under this identification py, j, is given by iy = kpio and py, j, is
given by i;f = kpt1. Hence the pasting of the above squares is (up to
isomorphisms) also a slice square, so the natural transformations

((wo 1w1)#0)* (Jn )« = wg (Gn)s = (T(wg/jn)) (Puo.gn)™ = (Tn—1)x ()"

and

((wo w1)#1)* (Jn)x = W] (Gn)s = (T(wy /i) s (Puwngn)™ = (71)4(i7)"

are also isomorphisms.
Combining these isomorphisms, we see that

#0 (Tn—1 171wk = (Tn—1)wtoky,

(Tn—1) (i) = w5 ()
)

= ((wo Lwi)*0)™(Jn)w = #5(wo Lw1)* (jn)s

lle
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and

lle

(Tn—1)xt1kp
(1) (in, )* = wi(jn)s
((wo w )#1)* (fn)s = #7 (wo Lw1)* (jin)s-

#] (1 1 m )k,

lle

lle

Since mates are compatible with pastings this means that the natural
transformation x*(wg I w1)*(jn)x = z*(mp—1 L 1)k is an isomorphism
for all z € ob(% 11 %), hence it is an isomorphism as isomorphisms can be
detected pointwise.

Note that, in general, the natural transformation

I~ (rp)s = (woUwy)s(wo Hwy)*

in the first square of the last row is not an isomorphism for all X € @ (J,,).
We are going to “fix” this by restricting our attention to essim((jy, )« (00, )1).

First, we compute (n—1)*(j,,)«X’ for X’ € essim(o0;): Consider the slice
square

(n - 1/]71) L) _n

ﬂl a P :

* o

Then we know that (n — 1)*(j,)« = mp™ is an isomorphism.

Now (n —1/j,) is isomorphic to the full subcategory K,, of _,, spanned
by n — 1 and oo, where p corresponds to the inclusion K,, — _,, under this
identification. Hence we see that m.p* = (n — 1)*p* = (p(n — 1))* since
n — 1 is the initial object of K,,. Therefore (n — 1)*(j,)« = (n — 1)*, where
the former n — 1 is the object in J, and the latter the one in _,. Since
0: % — J, is a cosieve we know that (n — 1)*X’ >~ 0 for X’ € essim(o0y),
so we obtain (n — 1)*(j, )X’ = 0.

This means that for X € essim((j )« (005)1) we have 0*I* X =~ ([,,00)* X =~
(n —1)*X = 0. On the other hand, for any ¥ € @(% LI %), we have
00*(wo U wy)«Y = 0 since wy 1wy is a sieve. Hence [} =~ (r,), and
(wo T wy)s(wo Hwy)* agree on 00 = n — 1 for X € essim((jp)«(00n)1).

We now consider w; for i € {0,1}. In the slice square

(wi/woﬂwl) L * L%

7{ = onuwl ’

(wi/wowy) can be identified with % and p with #;: % — % 11 %. Hence we
see that w} (wo L w ), = mew] = w) is an isomorphism. This yields

w; (wo T wn )4 (wo Twy)* = w (wo Twy)* = ((wo Twy)w;)*

=w) = (lhyw;)* = Wil ~w!(ry)s«,

14



so W (rp)s = w] (wollwy )« (wollwy )* is an isomorphism by the compatibility
of mates with pastings.

All in all, (1,)% = (wp w1 )« (wo Hwi)* is an isomorphism pointwise, so
it is indeed an isomorphism. This means that the last remaining square is
also filled with an isomorphism, so o, : w, = wW,_1 X w1 is an isomorphism
in total. O

*

Corollary 1.7. Let p: (1) — (2) be the map with pu(0) = 0 resp. p(1) = 2
and let € be the unique map from (1) to {0).

Then for any X € ob(D (%)), w1 X = QX has a monoid object structure
given by the multiplication

(a5 M)x

mx: le X OJ1X (,UQX M le

and the unit
0: 0 2> woX 49X, 4 X

Proof. The previous proposition and the preceding remarK imply that the
Segal morphism

wnX - (le)n

is an isomorphism for any n € N. Therefore we have Xy =~ 0 and the
simplicial set induced by w X : Fin®® — (%) satisfies the Segal condition,
so it is a special simplicial object. Hence w1 X = QX has a natural monoid
object structure (see [Proposition A.7).

Now note that (n) € obFin and [n] € ob A are equal as sets for all
n € N. Furthermore, we have is = ¢°, i} = ¢!, = 6! and ¢ = ¢” as maps
between sets. Hence the monoid object structure on w; X which is induced
by the special simplicial set corresponding to w X is indeed given by the
morphisms mx and 0. O

Loop Objects as Group Objects

The last step in this section is the construction of inverses for the mul-
tiplication of loop objects, concluding that loop objects are group objects.

Proposition 1.8. Let o: (1) — (1) be the only non-trivial automorphism,
i. e. the map swapping 0 and 1.

Then, for any X € D(%), there is an inversion morphism for the multi-
plication of QX =~ w1 X which is given by (wy)x: w1 X — w1 X.

Proof. We have to show that the composition z = mx o (idx X (ws)x)
factors through woX = 0, i.e. is the zero morphism. In order to do this we
will describe z as a morphism which factors through ws X.

15



Let ¢: (2) — (1) be the map with ¢(0) = 0 = ¢(2) and ¢(1) = 1. We
claim that the diagram

(wo)x we X (wp)x
l(am

w1 X T wiX x w X ——— w1 X

commutes.
The right triangle commutes by the definition of myx. We verify the
commutativity of the left triangle componentwise. Indeed, we have

pry o (wiy X wip) © (We)x = Wiy © (W) x = (Woin) x = (Wideyy )X
= idw1X =pr;o (idw1X X (WU)X)
and
pry © (Wiy X wir ) © (we)x = wy, © (We)x = (Weoi)x = (Wo)x
= pry o (idw, x % (wo)x)

since ¢ 0 iy = id¢yy and ¢ o iy = 0.
Hence we obtain that
Z=MmMxo (ldX X ( ) )
= (wp)x 0 (ay ) x o (2)x © (wg) x
= (Wp)x © (We)x = (Wgop)x-

Now note that ¢ o p factors through (0) as ¢(u(0)) = #(0) = 0 = ¢(2)
#(1(0)). Hence z = (wgop) x factors through woX = 0.

|
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2 Double Loop Objects

Our next aim is to show that the group object structure on a double
loop object is abelian.
In this section @ will again be a pointed derivator.

Loop Functor as a Functor to Group Objects

An important result about the loop functor is the fact that it factors
through the category & (%)-Grp of group objects in P (%) also on the level
of morphisms.

Lemma 2.1. Let f: X —> Y be a morphism in D(%).

Then the induced morphism Qf : QX — QY is a homomorphism of group
objects in D (%), where QX and QY are endowed with the group object struc-
ture discussed in the [previous section.

Proof. First we note that the functors w X,w Y: Fin®® — P(%) induce
special simplicial objects as discussed in the previous section. Furthermore,
a morphism f: X — Y induces morphisms wy f: ws X — w,Y for a € ob Fin.
This assignment is natural in a since for a given u: a — b, the diagram

woX Iy Y

(wa)x | [

WbX be> (,UbY

commutes since w,, is a natural transformation by CemmaT3.
Hence w f:w X = w Y induces a morphism of monoid objects

OX = w X =Y, Ly =y

as a natural transformation between special simplicial objects (see
FionAd). Now any morphism of monoid objects between group objects is
already a morphism of group objects. (This can be, for example, checked
on represented functors and hence can be reduced to the fact that a monoid
homomorphism between groups is already a group homomorphism.) O

Products under the Loop Functor

The next step in this section is showing that ) preserves products.

Remark 2.2. Note that the functor Q: PD(%) — D(%) has a left adjoint
Y D(%) > D(*) (see [2, Proposition 8.18]).
Hence 2 preserves limits. In particular, the natural morphism

QO (H Xz) [Tier ©(pr;) HQXZ

iel iel
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is an isomorphism for any index set I and any family (X;);e; of objects in
D (%).

This immidiately implies that also the group object structure on loop
objects are compatible with products.

Remark 2.3. For X,Y € ob (%), the morphism Q(X x Y) pr)x0pry),
QX x QY is a homomorphism of group objects since it is a product of group
object homomorphisms.

This endows Q(X x Y') with the structure of a product of QX and QY
as group objects s. t.

ma(xxy) = (Qpry) x Q(pry)) ™" o multax «ay o(2(pr;) x Q(pry)),

where multox <oy : (2X x QY) x (QX x QY) - QX x QY is the multipli-
cation morphism of the product group object.

Furthermore, the compatibility of 2 with products yields a “new” group
object structure on double loop objects.

Corollary 2.4. For X € ob(D(%)), Q*(X) has (in addition to the one
given by being the loop object of QX)) a group object structure given by the
multiplication

Q(mx)

m’y: Q2(X) x Q%(X) S Q(QX x QX) QX)) = O%X,

the unit

0— Q*X
and inverses
Q2X Q((ws) x) QZX
Proof. The commutativity of the required diagrams follow from the fact that
the corresponding diagrams commute before applying €. O

The Eckmann—Hilton Argument

We now have everything at hand to immitate the standard proof of the
fact that a group object in Grp is an abelian group in order to show that
the group object structure on a double loop object is abelian.

Lemma 2.5. Let X € obD(%). Let sa3 := pry X prg x pry x pry: (22X)* —
(Q2X)* be the morphism which “swaps the second and the third factor”
Then the diagram

DX x 02X x O2X x Q02X o3 02X x 02X x 02X x Q02X
m’X xm’)(l imnx Xmaox
02X x O2X 02X x Q02X
maox m/,
02X *



s commutative.

Proof. We first note that the diagram

20X x QX) x Q(2X x QX)

Q(QX) x Q(QX) QX x QOX)

\ QX)) T
2)

commutes since Q(my): QX x QX) — Q(2(X)) is a homomorphism of
group objects by Lemma 2711

Now (max x mqx) o sg,3 is the multiplication morphism of 02X x 02X,
which also coincides with ((pry) x Q(pry)) omax xax © (Q2(pry) x Q(pry))
by Bemark 273.

Hence, identifying Q(QX x QX) with Q?X x Q2X, the diagram (2)
becomes a commutative diagram

02X x 02X x 02X x O2X

’ ’ m xXm [oF}
mly xm'y; ;T (max xmax)os2,3

Q(NX x QX) x QOQX x QX)

% mX) m!

02X x O2X

Q(QX) x Q(QX) "X Q(QX x QX)
M m
Q(0X))
which contains the required diagram. O

Corollary 2.6. The “group laws” mqx and m'y on Q%X coincide and are
abelian.

In particular, Q%: D(%) — D(%) factors through the category D(%)-Ab
of abelian group objects in D(%) since each homomorphism of group objects
between abelian group objects is a homomorphism of abelian group objects
and vice versa.

Proof. Consider the morphism
fri=pr; x0x0xpry: O2X x 02X - 02X x ®°X x Q2°X x Q*°X

Then we have pr; o (mq, X max)osz3zo f =mq, o(pr; x0) = pr; and
pry o (Mmay X Mmax) o sa30 f =may o (pry x 0) = pry since 0 — Q%X is the
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unit morphism for mgq, . Hence we have (mq, xmax)osazof =idgexa2x
as these morphisms agree after composing with each of the projections.

Furthermore, we also have pr; o (m/y x m/y)o f =m/y o (pr; x 0) = pr;
and pry o (m’y x m/y) o f = m/y o (pry x 0) = pr; since 0 — Q%X is also the
unit morphism for m/y. Hence (m/y x my) o f =idg2xxq2x as these agree
after composing with each of the projections.

In total, using the Eckmann—Hilton identity from the [previous lemmal,
we obtain

mox = mox ©idg2xx02x
:mQXO(m/X Xm/X)Of
= m'y o (mqy X max)osz30 f

= m'y oidgeyxwo2x = mx.
For the commutativity of maox = m’X we consider the morphism
g:=0xpr; X pry x 0: 2X x 02X — Q%X x Q%X x 02X x Q%X.

Then we have pr; o (mg, X max)os230g =mq, o (0 x pry) = pry and
pry o (Mo, X mox) o s230¢g = mq, o (pr; x 0) = pry, therefore (mq, x
max) © $23 0 g = Pry X pry, i.e. the “swapping morphism”. On the other
hand, we also have pr; o (m'y x my) og = m/; o (0 x pry) = pr; and

pryo(mly x m’y)og = mlx o (pry x 0) = pry, so (my x m/x)og = idgax xa2x-
Hence, the Eckmann—Hilton identity yields

mox = max ©idg2xx02x

= max o (my x m'y)og

= mly o (may X Max) 05230
m'x o (pry x pry)

= mqx o (pry X pry),

which means that mgx = m/y is indeed a commutative multiplication. [

20



3 Applications

Besides the intristic motivation for studying it, the loop functor can be
used to show that stable derivators are additive.

Corollary 3.1. Let D be a stable derivator. Then D(%) is an additive
category.

Proof. First of all, @ (%) has all products since @ is a derivator. Further-
more, we know that € (and hence 2) is an equivalence of categories since
D is stable.

Now note that Q2?: D (%) — D () factors through the category & (+%)-Ab
of abelian group objects in @ (%) by since morphisms between
abelian group objects are simply homomorphisms of underlying group ob-
jects.

Hence @ (%) ~ D(%)-Ab. Now the category of abelian group objects in
a category with finite products is an additive category (see [Corollary B.10).

O

Furthermore, note that one can construct the “shifted derivator” & for
a given small category A, which is given by @4(B) = @(A x B) on small
categories, (u*)gA = (ida x u)? on functors and ('y*)g)A = (idig, x 7)?
on natural transformations (see [2, Proposition 7.32]). Then @4 is pointed
resp. stable if D is so, hence we can obtain statements about & (A) ~ D4 (%)

by considering @4 as a derivator.

Remark 3.2. Let A be a small category.
Then the shifted loop functor

Q4 = (idg x 7))s 0 (idg x 0): D(A) — D(A)

factors through & (A)-Grp and the double shifted loop functor (QA)2 factors
even through @(A)-Ab.
Moreover, P (A) is an additive category if @ (and hence @4) is stable.
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A The Segal Condition

In this appendix we will justify by showing that a certain
type of simplicial objects give rise to monoid objects.
We start with a review of simplicial objects.

Notation A.1. Let A be the simplex category, i.e. the category of non-

empty finite ordinal numbers. For n € N set [n] = {0, ..., n}.
For ne Nand i€ {0,...,n} we fix notation for the following morphisms
in A:

e 0" [n—1] — [n], n > 0, is the unique monomorphism which “skips

7

)

e o™ [n+ 1] — [n] is the unique epimorphism which “collapses i + 1
to 7,

e ¢™: [1] — [n], i < mn, is the inclusion of {i,i + 1}.

In most cases, we will omit the index n if it is clear from the context.
Given a category 6 and a simplicial object X : A° — 6, we will denote
X([n]) by X,. Then the above maps induce:
o d¥ = X(6"): X,, —» X,,_1, the i-th face map,
° s;X = X(0"): X, —» Xny1, the i-th degeneracy map,

o fX:=X(¢"): X, —> X1.

The simplicial object in consideration will mostly be clear from the context
and we will omit the upper index X in these cases.

In a certain sense, face maps and degeneracy maps determine a simplicial
object uniquely.

Remark A.2. All morphisms in A can be written as a composition of
suitable %’s and o*’s. These maps satisfy the simplicial relations:

o /o =50 fori < j,
e glodt =800/t fori<j,

0/od =idfori=jandi=j+1,

e 0/0d =5"1ogl fori>j,

o 0lool =0""tood fori>j.

Furthermore, all relations between the 6°’s and the ¢*’s are implied by
these relations in the following sense:
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For a category 6, a collection (X, )nen of objects in € with morphisms
di: Xp1 — Xpforn>0,0<i<nands;: X, > Xps1for0<i<n
yields a simplicial object X s.t. d; = X (6°) and s; = X (0?) iff the simplicial
identities (which are induced by the simplicial relations) hold:

° diodj Zdj_lodz‘ fOI‘i<j,

e diosj=s;_10d; fori<yj,

° diOSjZidfori:jandi:j+1’

d;osj=sjod;_q fori>j,
® s;05; =s;j0s;_ fori > j.

A relevant fact in the theory of simplicial sets is that a simplicial set
X: A° — Set is isomorphic to the nerve of a (small) category if and only
if the Segal condition is satisfied, i.e. for any n € N, the natural map

X, ' fi X1><X0n
is an isomorphism. Since (small) categories with only one object can be
identified with monoids, this means that simplicial sets X which have exactly
one O-simplex (i.e. Xo = {*}) and fulfill the Segal condition can also be
identified with monoids.

In the following we want to prove a similar statement for simplicial ob-
jects in a category. We know that, in general, fiber products don’t exist in
values of a derivator, but products do. Therefore we will restrict our atten-
tion to simplicial objects X with Xy =~ % for a terminal object %, so that
we have X" = 1X *0™ which makes calculations easier.

In the rest of this appendix € will be a category which has all finite
products (hence an terminal object %) and X : A°? — € a simplicial object
in 6.

Definition A.3. X is called special if Xg = % and X satisfies the Segal
n—1 g
condition, i.e. X, —=2 N’ 7 is an isomorphism for all n € N.

We will denote the category of special simplicial objects in ‘€ with natural

transformations between those as morphisms by (s6)%P.
First we show that special simplicial objects give rise to monoid objects.

Proposition A.4. Let X be a special simplicial object in 6.
Then X1 has a monoid object structure given by the multiplication mor-
phism

(foxf1)™t

mxtX1><X1 X2£>X1
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and the unit morphism
ex: % EN Xo =0, X1,
where we will omit the index X if it is clear from the context.

Proof. For associativity we consider the diagram

X1 X X1 X X1

(fOOPr1)><(f10P1"1)><P% Y/&X(foopr2)><(f10p1f2)

Xo x X4 fox fixf2 X1 x Xo
(d1opry) xprQJ/ \ / J{prlx(dloprQ)

Xl % X d3x fa foxdo Xl % Xl

foxti| / - [roxn

X2 X2
N /
X1

The lower parallelogram commutes as d;ody = djod; is one of the simpli-
cial identities. Note that the upper left and upper right sides of the diagram
are symmetric, so we will only show that the upper left part is commutative
since the commutativity of the other part can be shown similarly.

For the upper left triangle we have

pry o ((foopry) x (fiopry) x prg) o (ds x fa) = (foopry) o (ds x f2)
= foods = fo
= pry o (fo x f1 % fa2)

since ¢° = 3% 0 ¢°: [1] — [2] — [3]. Similarly, we also have
pry o ((fo o pry) x (fiopry) x pry) o (ds x f2) = f1ods
= fi=pryo(fox fi x f2)
since ¢! = 6% 0 ¢': [1] — [2] — [3]. For the third factor we have
pr3 © ((fo o pry) x (fi o pry) x pry) o (ds x f2) = pry o (ds x fa)
= f2 =przo (fox f1 x fa).

Hence ((fo opry) x (fi opry) x pry) o (ds x fa) = fo x f1 X fa since these
morphisms coincide after composing with each of the projections.
For the middle left triangle we have

pr; o ((dy opry) x pry) o (ds x fa) = (dy opry) o (ds x f2)
=dyod3y = foody =pryo(fox fi1)od;
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since 61 0 ¢° = §3 0 §1: [1] — [2] — [3]. We also have

pry o ((di opry) x pry) o (dz x f2) = pry o (d3 x fa)
= fo= fiody =pryo(fox fi)od;

since ¢? = §tog!: [1] — [2] — [3]. Hence the morphisms ((d; opry) x pry) o
(ds x fa) and (fp x f1) ody coincide as morphisms into the product X7 x X.

Inverting the isomorphisms fo x f1 % fa, (fo o pry) x (f1 o pry) x pry,
pr; x (foopry) x (fiopry) and fy x fi, we obtain a commutative diagram

X1 X X1 X X1
X2 X X1 X1 X X2
(d1opry) xprzl \ / lprlx (diopry)
X f2 foxdo

X1><X1 ds X1XX1

.
x)ﬁ/

which contains the required associativity diagram.
In order to show that e is a right unit for m, we consider the diagram

X9
/ lﬁ)N
1d><(eofr))(1 x X1 “m X1

Then the triangle on the right commutes by the definition of m.
On the left side we have

pryo (fo x fi)osi = foosi =idx,

since idpy = o' 0 ¢°: [1] — [2] — [1]. For the second factor we have

proo (fo X fi)os1 = fiosy =spod;

since 61 0 0¥ = ol 0 ¢!: [1] — [1], and sg o d; = e o 7 since 7 is the unique
map into the terminal object % and e: % = X035 X,y by definition. Hence
the left triangle is also commutative since (fp x f1) o s1 and idx, x (e o)
agree on both factors.

The commutativity of the above diagram yields m o (idx, x (eom)) =
dy o s1 = idx,, where the latter equality is a simplicial identity. Hence e is
indeed a right unit for m.
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Now one can analogously show that the diagram

/ lf“N

X1XX14>X1

(eom) x 1d

is also commutative. Hence e is also a left unit for m. O

Next, we want to see that this assignment is functorial.

Lemma A.5. Let X,Y be special simplicial objects in 6, and v: X — Y
a morphism of simplicial objects, i. e. a natural transformation between the
functors X, Y : AP — 6.

Then we have

n—1 n—1 n—1 —1
H(’Ylopri):<Hfz‘y>07no<l_[fzx> :X{L_’Xn_’yn_’yln
=0 =0 =0

for all m € N.

Proof. For n = 0 the statement follows from the fact that there is a unique
morphism between the terminal objects Xy and Yj.

For n > 0 we check the equality componentwise. Indeed, for ig €
{0,...,n — 1} we have

n—1 n—1 -1
o(ﬂfiY)ow(Hff) = fb oo (fo>
1=0 1=0
n— -1
:’hofi)o(O(HfiX)
=0

= 71 © Pry,
n—1
= pry, © (H(’n o pri)> ;
i=0
where the second equality follows from the naturality of ~. O
Proposition A.6. Let v: X — Y be a morphism between special simplicial
objects.
Then ~1: X1 — Y1 is a morphism of monoid objects.
Proof. By the naturality of v, the diagram

% id %

=| E

X()LYVO

X Y
S0 l lso

XlLYVO
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commutes, so 7y is compatible with the unit.
For the compatibility with the multiplication we consider the diagram

XX f) Y2

X1XX10 Xfl\ YgXYl
\d /
which is commutative by the naturality of v and the definition of mx resp.
my. Now

(f x f)ovao(f5f x fi)7 = (mopry) x (71 0pry),

by the previous Temmal, which implies that the above diagram witnesses the
compatibility of «v; with the multiplication. O

[Proposition A.4 and [Proposition A.G can be summarized as follows:

Corollary A.7. The functor (_)1: (s6)*P — G factors through the category
6-Mon of monoid objects in 6.

In fact, (_); defines an equivalence of categories from (s6)*P to 6-Mon,
where a quasi-inverse is given as follows:

For M € ob(6-Mon) with “multiplication” m: M x M — M and “unit”
e: % — M, we define a (special) simplicial object XM with XM = M™ for
n € N, where the structure morphisms are given by

H?:Z pry t=0
M —1 .
2 =TT i=n
(sz prj> X m X (1_[}1:”1 prj) otherwise

for n € Nog and 0 < 7 < n resp.

XM <Hpr>>< eow)x(H prj>
j=it1
for n e N.

Given a morphism f: M — N of monoid objects in €, we let v/: XM =
XN be given by

'YT{: X"]IM _ Mn Hi:o(fopri) Nn _ X7]l\f

for all n € N.

Since we don’t use this statement we omit the tedious proof of the fact
that the given is assignment is a well-defined functor which is indeed a
quasi-inverse for (_);: (s6)*® — 6-Mon.
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B Additive Categories

In this appendix we discuss certain descriptions of additive categories
which lead to the additivity of stable derivators (see [Corollary 3.1]).
We begin with basic definitions and notations.

Definition B.1. A preadditive category is a category o s.t.

(i) o is pointed, i.e. has a zero object, which is an object 0 which is both
initial and terminal,

(ii) binary (and hence all finite) products and coproducts exist in o,
(iii) for any X,Y € obd, the morphism
(idX X 0X7y)U(0y,X X idy): XuYy - X xY

is an isomorphism, where Oxy: X — 0 — Y resp. Oy,x: Y - 0 — X
is the unique morphism which factors through a zero object.

Notation B.2. e Biproducts in the above sense will be denoted by _&®_.

e If X, Y, X' resp. Y’ are objects of a preadditive category and fx x/: X —
X' fyx:Y = X' fxyr: X > Y resp. fyy/: Y — Y’ are some mor-
phisms, then we denote the morphism

(fxx % fxy)U(fyx x fxx): X@Y - X' @Y’

(fX,X' fY,X’)

Ixy' fvy' )’

Note that, using the universal properties of products and coproducts,
any morphism f: X ®Y — X' @Y’ can be written as

by

_ (pryso foiny pry;o foiny
pry; o foiny pryso foiny /)’

Matrices of different sizes are constructed similarly.

e We will also use common abuses of notation such as denoting an iden-
tity morphism by 1 or a morphism that factors through a zero object

by 0.
Next, we want to give an alternative description of preadditive categories.

Remark B.3. A preadditive category is enriched over the category AbMon
of abelian monoids. Indeed, for any X,Y € obd, setting

03,0
:XMX(—BXQY@Y—l»Y

f+yg
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for f,g € Homg(X,Y') yields an abelian monoid structure on Homg(X,Y)
with neutral element Oxy and for any X,Y, Z € ob o, the composition map

_o_: Homy(Y,Z) x Homy(X,Y) — Homg (X, Z)

is bilinear w.r.t. this “addition operation”.
Furthermore, a straightforward computation shows that composing mor-
phisms corresponds to multiplying their matrix representations.

Proposition B.4. Let o be a category that has finite products.

Then A is preadditive if and only if it is enriched over the category
AbMon of abelian monoids, 1. e. if all morphism sets of s have an abelian
monoid structure s. t. composition is bilinear.

Proof. A preadditive category has finite products by definition and Eed
imark B3 means that it is also enriched over AbMon.

Now let o be a category that has finite products and is enriched over
AbMon. For X,Y € obd let the “addition” in Homg(X,Y") be denoted by
+x,y and its unit by Ox y.

ol has in particular a terminal object %. The monoid structure on
Homg (%, %) is trivial since % is a terminal object and any monoid with
only one element is trivial. In particular, we have idy = Oy .

For all X € obd, Homg (%, X) has a monoid structure, hence is not
empty. Now for any f: % — X we have f = foidy = foOgxx = Ox x
by the bilinearity of composition. Hence Homgy(#%,X) = {04 x} for all
X e obd, i.e. % is also an initial object and therefore o is pointed. From
now on 0 will denote a zero object in d. Note that for any X,Y € obd,
Ox,y is the unique morphism that factors through 0.

Let X,Y € obgd. We want to endow X x Y with the structure of a
coproduct of X and Y s.t. (idx x Oxy) I (Oy,x x idy) = idxxy. This
enforces the structure morphisms of the coproduct to be in; := idx x Oxy
and ing = Oy, x X idy.

Given Z € obd and morphisms fi: X — Z and fo: Y — Z, define
fill fa to be (fi opry) +xxy,z (f2 o pry). Then we have indeed

((fiopry) +xxv,z (f2opry)) oing

((fropry) +xxv,z (f2opry)) o (idx x Ox,y)
((fiopry) o (idx x Oxy)) +x,z ((f20prg)) o (idx x Oxy)) =
(fioidx) +x,z (f200xy) =

fi+x2z0x2z=h

and similarly

((fiopry) +xxy,z (f2opry)) oing =
((fiopry) o (Oy,x xidy)) +v,z ((f2 o pry)) o (Oy,x x idy)) =
Ov,z +v,z f2 = fo.
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Now let f': X xY — Z be another morphism s.t. f'oin; = f; and f’oing =

fa.
We first claim that

idxxy = (pr; X Oxxv,y) +xxv,xxv (0xxv,x X pry).

Indeed, by the bilinearity of composition we have

pry o ((pry X Oxxyy) +xxv,xxy (Oxxy,x X pry)) =
(pry o (pry X Oxxyy)) +xxv,x (Pry o (Oxxy,x X pry)) =

pri +xxv,x Oxxy,x = pry

and similarly

pry o ((prqy X Oxxvy) +xxv.xxy (Oxxy,x X pry)) = pry.

Hence the two morphisms coincide since they agree on both factors.
Moreover, note that we have

pry o (idx x Oxy)opr; = pry
and
pryo (idx x Oxy) opr; = Ox,y opr; = Oxxvy,

which means that in; o pr; = (idx x OX,Y) opr; = pr; X Oxxy,y since
these morphisms agree on both factors. Similarly, we also have iny o pry =
(OY,X X ldy) O proy = OXXY,X X proy.

Again using the bilinearity of composition, these yield

foidxxy = f'o((pr; x Oxxyy) +xxv.xxy (Oxxy.x X pra))
= (f" o (pr; x Oxxvyy)) +xxv,xxy (f' 0 (Oxxy,x X pry))
= (f'oing opry) +xxy,xxy (f' 0ing o pry)
= (fropry) +xxvxxy (f2opry) = fill fa.

Hence in; and iny do endow X x Y with a suitable coproduct structure. [J

Using this characterization we obtain a generic class of preadditive cat-
egories.

Proposition B.5. Let 6 be a category which has finite products.
Then the category €-AbMon of abelian monoid objects (with homomor-
phisms of monoid objects between them) is a preadditive category.

Proof. First we note that -AbMon can alternatively be described as fol-
lows:

ob(6-AbMon) = {M € ob€ | Homg(_, M) factors through AbMon},
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and

Homg.AbMon (M, N) = {f € Homg (M, N) |
(f+)x : Homg(X, M) — Homg(X, N)
is a morphisms of (abelian) monoids for all

X e ob6}

for any M, N € ob(6€-AbMon).

Hence, for any M, N € ob(6-AbMon), Homg_ apmon(M, N) has an
abelian monoid structure given by pointwise addition and units on the level
of represented functors. Then compisition is bilinear w.r.t. this addition
since morphisms between monoid objects are chosen to preserve the addition
on the homomorphism sets.

This means that 6-AbMon enriched over AbMon and hence a pread-
ditive category by the previous proposition. O

Remark B.6. Remark B3 implies also that any object X of a preadditive
category has the structure of an abelian monoid object given by the codi-
agonal morphism V := (11) : X ® X — X and the “unit” 0 — X. Dually,
X has also the structure of a cocommutative comonoid object given by the
diagonal morphism A := (1): X ® X — X and the “counit” X — 0.

In fact, for a preadditive category o, the functor d — sd-AbMon which
endows an object with the above abelian monoid structure is an equivalence
of categories. However, we will neither use nor prove this statement.

As the prefix “pre” suggests, preadditive categories are not quite what
we are looking for. We get to the concept of additive categories by requiring
that additive inverses of morphisms exist.

Proposition B.7. Let d be a preadditive category.
Then the following are equivalent:

(i) For any X € obd, the “shear morphism”

11
(1 1) xox-xox

is an tsomorphism.

(ii) For any X € obdl, the identity morphism idx has an additive inverse
m Endgq (A)

(iii) For any X,Y € obdl, each f € Homg(X,Y') has an additive inverse.

(iv) For any X € obd, the abelian monoid object (X,V,0 — X) is an
(abelian) group object.
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(v) For any X € obdl, the cocommutative comonoid object (X, A, X — 0)
is a (cocommutative) cogroup object.

Proof. “(i) = (ii)”: Let the inverse of the shear morphism of X be given by

<‘7.1’1 ‘7.1’2> XOX > X®X.
J2,1  J22

Then we have

<1 0) _ <1 1) <j1,1 j1,2> _ (jl,l +Jo,1 J1,2 +j2,2>
01 0 1) \J21 J22 Ja2,1 J2,2.
Hence j1,2 = OX,X and j1,1 = j272 = idx. This yields

idx + j12 = Jjo2 + J1,2 = Ox x,

so ji,2 is an additive inverse of idx.
“(ii) = (i91)”: Let —idy be an additive inverse for idy. Then the
bilinearity of composition yields

f+fo(—idx) = foidx+ fo(~idx) = fo(idx +(—idx)) = foOx x = Ox,y,

i.e. fo(—idx) is an additive inverse for f.

“(#i1) = (iv)”: Note that X is a group object in o if and only if its rep-
resented functor Homgy(_, X) factors through the category Grp of groups.
Since X is an abelian monoid object, we already know that Homg(_, X)
factors through AbMon. Now the fact that for each Y € obd each f €
Homg (Y, X) has an additive inverse implies that the abelian monoids
(Homg (Y, X),+v,x,0y,x) are in fact abelian groups. Since all monoid ho-
momorphisms between groups are already homomorphisms of groups, this
means that Homg(_, X) factors through the category of (abelian) groups.

“(iv) = (v)”: If X is a group object with the “multiplication” given by
V, there exists a morphism j: X — X s.t.

1
Oxx = (1 1) <]> —idy oidx +idy o = idx + j.
Hence for comonoid structure on X we obtain
(1 ]) <1> =idyoidy + joidxy =idx +Jj = 0x x.

A similar argument shows that the fact that j is also a “left inverse for
the multiplication of X” implies that j is also a “left inverse for the comul-
tiplication of X”. In total, we obtain that (X,A, X — 0,7) is a cogroup
object.
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v)=(i)": Letj: X — e the “coinverse” morphism w.r.t. A. Then
“ 1)”: Let j: X — X be the “coi 7 phi t. A. Th
calculations similar to the ones in the proof of the previous implication yield
that idxy +7 = Ox x = j + idx. Hence we obtain

1 1\ /1 j\ (140 j+1y (1 0
o0 1)\o 1) \o+0 0+1) \0o 1
1 4\ /1 1\ (140 144\ (1 0
0 1/J\o 1) \o+0 0o+1) \o 1/)°

Since idxgx = ( [1) ), we see that the shear morphism is an isomorphism. [

and

Definition B.8. A preadditive category is called additive if it satisfies one
(and hence all) of the conditions in the previous proposition.

Additive categories also have an alternative characterization similar to
the one in [Proposition B.4 for preadditive categories.

Corollary B.9. A category s which has finite products is additive if and
only if it is enriched over the category Ab of abelian groups.

Proof. If o is additive then the condition (éii) in [Proposition B.7 means
that o is enriched not only over AbMon, but even over Ab since additive
inverses exist in homomorphism monoids and (bi)linear maps of abelian
groups are exactly (bi)linear maps of underlying monoids.

Conversely, if o is enriched over Ab, then o is preadditive by
Fion B4 and the condition (i¢) in [Proposition B.1 is fulfilled since additive
inverses in all homomorphism monoids exist. O

This characterization yields a generic class of examples which is used in
the proof of Corollary 3.1.

Corollary B.10. Let B be a category which has finite products.
Then the category 6-Ab of abelian group objects (with homomorphisms
of group objects between them) is an additive category.

Proof. Just as the previous corollary], this follows immediately from
Eifion B4 and the condition (ii¢) in [Proposition B.1. O

Lastly, let us note that as in the case of preadditive categories, an addi-
tive category d is in fact equivalent to the category of abelian group objects
in o.
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